Concept

Théorie des codes

Résumé
En théorie de l'information, la théorie des codes traite des codes et de leurs propriétés et de leurs aptitudes à servir sur différents canaux de communication. On distingue deux modèles de communication : avec et sans bruit. Sans bruit, le codage de source suffit à la communication. Avec bruit, la communication est possible avec les codes correcteurs. En définissant l'information de façon mathématique, l'étape fondatrice de la théorie des codes a été franchie par Claude Shannon. D'autres définitions existent, mais l'entropie de Shannon a été la plus fructueuse. Ainsi, on est apte à répondre aux deux questions fondamentales de la théorie de l'information : quelles sont les ressources nécessaires à la transmission de l'information, et quelle est la quantité d'informations que l'on peut transmettre de façon fiable. C'est de cette dernière question du codage de canal que traite la théorie des codes. En répondant aux deux questions de base de la théorie de l'information, Shannon n'a justement pas fourni un ensemble très puissant de codes correcteurs. En particulier, il n'a pas déterminé d'exemple de code qui atteint la limite prévue par son théorème du codage de canal. C'est ce vide que comble la théorie des codes. Il existe de nos jours une multitude de méthodes visant à produire de bons codes correcteurs. On distingue d'abord les codes par la quantité d'information transmise par un symbole. Le canal binaire symétrique étant le plus commun, on considérera souvent un code binaire. Il existe cependant aussi des codes trinaires et, en général, des codes q-aires. Les noms de variables suivants sont la plupart du temps, utilisés par convention. est un code contenant mots de code, c'est-à-dire, de dimension M. La longueur d'un mot de code est dénotée par . Un tel code est dit code . La plupart des codes s'utilisent soit pour la détection ou la correction d'erreur. Méthodes de décodage La distance minimale d'un code influe la probabilité d'erreur de décodage. La distance minimale est un paramètre important, dénoté .
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.