Nanoscale chiral skyrmions in noncentrosymmetric helimagnets are promising binary state variables in high-density, low-energy nonvolatile memory. Skyrmions are ubiquitous as an ordered, single-domain lattice phase, which makes it difficult to write information unless they are spatially broken up into smaller units, each representing a bit. Thus, the formation and manipulation of skyrmion lattice domains is a prerequisite for memory applications. Here, using an imaging technique based on resonant magnetic x-ray diffraction, we demonstrate the mapping and manipulation of skyrmion lattice domains in Cu2OSeO3. The material is particularly interesting for applications owing to its insulating nature, allowing for electric field-driven domain manipulation. (C) 2016 Author(s).
Aleksandra Radenovic, Andras Kis, Mukesh Kumar Tripathi, Zhenyu Wang, Asmund Kjellegaard Ottesen, Yanfei Zhao, Guilherme Migliato Marega, Hyungoo Ji
Andreas Peter Burg, Reza Ghanaatian Jahromi