Distance statistiquevignette|Représentation de la distance en variation totale (en gris) entre deux fonctions de densité En mathématiques, et plus précisément en théorie des probabilités et en statistique, la notion de distance statistique sert à mesurer l'écart entre deux lois de probabilité. Les distances statistiques sont notamment utilisées en théorie de l'information, en statistique, en apprentissage automatique, et en cryptologie. Lorsqu'aucune précision n'est donnée, la « distance statistique » entre deux lois fait généralement référence à la distance en variation totale.
Distance en variation totale (probabilités)En mathématiques et plus particulièrement en théorie des probabilités et en statistique, la distance en variation totale (ou distance de variation totale ou encore distance de la variation totale) désigne une distance statistique définie sur l'ensemble des mesures de probabilité d'un espace probabilisable. Soit deux mesures de probabilité sur un espace probabilisable . La distance en variation totale entre et est la quantité Il arrive que le facteur 2 n'apparaisse pas chez certains auteurs.
Mean shiftMean shift is a non-parametric feature-space mathematical analysis technique for locating the maxima of a density function, a so-called mode-seeking algorithm. Application domains include cluster analysis in computer vision and . The mean shift procedure is usually credited to work by Fukunaga and Hostetler in 1975. It is, however, reminiscent of earlier work by Schnell in 1964. Mean shift is a procedure for locating the maxima—the modes—of a density function given discrete data sampled from that function.
ÉquivarianceEn mathématiques, léquivariance est une forme de symétrie de fonctions d'un espace par symétrie avec un autre (tels que les espaces symétriques). Une application est dite équivariante par l'action d'un groupe de symétrie si ce groupe peut agir sur ses ensembles de départ et d'arrivée et quand cette application commute avec l'action de groupe. Autrement dit, appliquer une transformation du groupe de symétrie puis effectuer l'application produit le même résultat que d'effectuer ces opérations en sens inverse.