En mathématiques, léquivariance est une forme de symétrie de fonctions d'un espace par symétrie avec un autre (tels que les espaces symétriques). Une application est dite équivariante par l'action d'un groupe de symétrie si ce groupe peut agir sur ses ensembles de départ et d'arrivée et quand cette application commute avec l'action de groupe. Autrement dit, appliquer une transformation du groupe de symétrie puis effectuer l'application produit le même résultat que d'effectuer ces opérations en sens inverse. Les applications équivariantes généralisent le concept d'invariant, application dont le résultat est inchangé par une transformation de son argument. La valeur d'une application équivariante est souvent (par abus) appelée un invariant. En inférence statistique, l'équivariance sous transformation statistique de données est une propriété importante de plusieurs méthodes d'estimation ; voir estimateur invariant pour plus de détails. En mathématiques pures, l'équivariance est un objet central d'étude en topologie équivariante et ses sous-sujets (cohomologie équivariante et théorie d'homotopie stable équivariante). En géométrie du triangle, l'aire et le périmètre d'un triangle sont invariants : ces valeurs ne changent pas par translation ou rotation du triangle. Cependant, des centres du triangle tels que le centre de gravité, le centre du cercle circonscrit, celui du cercle inscrit ou l'orthocentre ne sont pas invariants, car déplacer un triangle entrainera le déplacement des centres. Toutefois, ces centres sont équivariants :appliquer un déplacement (combinaison d'une translation et d'une rotation) à un triangle, puis construire son centre, produit le même point que construire d'abord le centre, puis appliquer le même déplacement. Plus généralement, les centres du triangle sont par définition équivariants par similitude (combinaison d'une translation, d'une rotation et d'une homothétie et éventuellement d'une symétrie); le centre de gravité est même équivariant par toute transformation affine.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.