Espace de Hilbertvignette|Une photographie de David Hilbert (1862 - 1943) qui a donné son nom aux espaces dont il est question dans cet article. En mathématiques, un espace de Hilbert est un espace vectoriel réel (resp. complexe) muni d'un produit scalaire euclidien (resp. hermitien), qui permet de mesurer des longueurs et des angles et de définir une orthogonalité. De plus, un espace de Hilbert est complet, ce qui permet d'y appliquer des techniques d'analyse. Ces espaces doivent leur nom au mathématicien allemand David Hilbert.
Algèbre de von NeumannUne algèbre de von Neumann (nommée en l'honneur de John von Neumann) ou W*-algèbre est une -algèbre d'opérateurs bornés sur un espace de Hilbert, fermée pour la topologie faible, et qui contient l'opérateur identité (définition « concrète ») . Les algèbres de von Neumann sont des C-algèbres. De façon surprenante, le théorème du bicommutant de von Neumann montre qu'elles admettent une définition purement algébrique équivalente à la définition topologique.
Algorithme de RémyL'algorithme de Rémy est un générateur d'arbres binaires, dont la principale application est un algorithme efficace de génération aléatoire d'arbres binaires. L'algorithme doit son nom à son inventeur Jean-Luc Rémy. L'algorithme de Rémy est dû à Jean-Luc Rémy, chercheur au Centre de recherche en informatique de Nancy. Il a été créé en 1978 sans être publié immédiatement et a fait partie du folklore de l'algorithmique et de la combinatoire énumérative jusqu'à sa parution dans une revue francophone en 1985.
Processus de BernoulliEn probabilités et en statistiques, un processus de Bernoulli est un processus stochastique discret qui consiste en une suite de variables aléatoires indépendantes qui prennent leurs valeurs parmi deux symboles. Prosaïquement, un processus de Bernoulli consiste à tirer à pile ou face plusieurs fois de suite, éventuellement avec une pièce truquée. Une variable dans une séquence de ce type peut être qualifiée de variable de Bernoulli. Un processus de Bernoulli est une chaîne de Markov. Son arbre de probabilité est un arbre binaire.
Décimal codé binaireLe décimal codé binaire (DCB) (binary coded decimal ou BCD en anglais), est un système de numération utilisé en électronique numérique et en informatique pour coder des nombres en se rapprochant de la représentation humaine usuelle, en base 10. Dans ce format, les nombres sont représentés par un ou plusieurs chiffres compris entre 0 et 9, et chacun de ces chiffres est codé sur quatre bits : Chiffre Bits 0 0000 1 0001 2 0010 3 0011 4 0100 5 0101 6 0110 7 0111 8 1000 9 1001 Ainsi, pour coder un nombre tel que 127, il suffit de coder chacun des chiffres 1, 2 et 7 séparément, et l'on obtient la valeur 0001 0010 0111.
Identité de polarisationEn mathématiques, les identités de polarisation concernent l'algèbre multilinéaire. Elles correspondent à une caractérisation des formes bilinéaires symétriques, des formes sesquilinéaires hermitiennes. Si E est un espace vectoriel, ces formes sont des applications de E×E dans le corps des scalaires (réels ou complexes). Elles sont intégralement caractérisées par leur comportement sur la diagonale, c'est-à-dire par la connaissance d'une telle forme f sur l'ensemble des points (x, x) où x est un élément quelconque de E.