Publication

Optimization Opportunities in RRAM-based FPGA Architectures

Résumé

Static Random Access Memory (SRAM)-based routing multiplexers, whatever structure is employed, share a common limitation: their area, delay and power increase linearly with the input size. This property results in most SRAM-based FPGA architectures typically avoiding the use of large multiplexers. Resistive Random Access Memory (RRAM)- based multiplexers, built with one-level structure, have a unique advantage over SRAM-based multiplexers: their ideal delay is independent from the input size. This property allows RRAM-based FPGA architectures to use larger multiplexers than their SRAM-based counterparts, without generating any delay overhead. In this paper, by carefully considering the properties of RRAM multiplexers, we assess that current state-of-art architectural parameters for SRAM-based FPGAs cannot preserve optimality in the context of RRAM-based FPGAs. As a result, we propose that in RRAM-based FPGAs, (a) the routing tracks should be interconnected to Look-Up Table (LUT) inputs via a one-level crossbar, instead of through Connection Blocks and local routing; (b) the Switch Blocks should employ larger multiplexers; (c) length-2 wires should be used instead of length-4 wires. When operated in nominal voltage, the proposed RRAM-based FPGA architecture reduces area by 26%, delay by 39% and channel width by 13%, as compared to a SRAM-based FPGA with a classical architecture. When operated in the near-Vt regime, the proposed RRAM-based FPGA architecture improves Area-Delay Product by 42% and Power-Delay Product by 5x as compared to a classical SRAM-based FPGA at nominal voltage.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.