Publication

Infrared measurements of the heat flux spreading under variable divertor geometries in TCV

Résumé

The safe and stable operation of a future fusion reactor depends critically on the ability to control the heat loads on the material surfaces facing the plasma. The heat fluxes are particularly high at the strike points in the divertor, where the plasma interacts directly with the wall. By varying the divertor geometry it is possible to increase the power radiated or transferred to neutrals and to spatially extend the scrape-off layer (SOL), with the common goal of distributing the total power over a greater surface. In a diverted plasma, the heat flux profile at the divertor strike points is largely determined by three competing mechanisms: (I) transport of heat along the field lines, (II) cross-field transport in the SOL region (with the LCFS as a source of heat), (III) cross-field transport both in the SOL and in the private flux region (without source). Mechanisms II and III spread the heat flux profile at the divertor and the experimental profiles are well parametrised by the convolution of an exponential decay and a Gaussian, representing mechanisms II and III respectively [1]. Infrared (IR) thermography is an invaluable tool with which to measure the heat flux distribution independently of the plasma parameters. Langmuir probes and thermocouples in the graphite protection tiles provide independent measurements to cross-check IR estimates. The IR system of TCV was recently upgraded to provide coverage of a wider range of divertor configurations and simultaneous measurements at both strike points of a conventional divertor geometry. Using the magnetic shaping flexibility of TCV, multiple divertor configurations ranging from modifications of the classical single null to alternative ones have been tested under attached divertor leg conditions and are presented in this paper. While the outer strike point is generally well fitted with the decay length and an additional spreading in the divertor itself, the inner divertor view displays a double-peak heat flux profile in forward B field, which may be caused by drifts in the SOL [2] and has been previously detected in other tokamaks. In order to take into account the effect of such drifts on the target profile shape, an extension of the parametrisation from [1] representing a radial redistribution of heat is proposed. [1] Eich T et al. 2011 Physical Review Letters 107 215001 [2] Canal G et al. 2015 Nuclear Fusion 55 123023

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (33)
Stellarator
Le stellarator (de stellar : stellaire, et generator : générateur) est un dispositif destiné à la production de réactions contrôlées de fusion nucléaire proche du tokamak. Le confinement du plasma est entièrement réalisé par un champ magnétique hélicoïdal créé par l'arrangement complexe de bobines autour du tore, alimentées en courants forts et appelées bobines poloïdales. Le stellarator est analogue au tokamak à la différence qu'il n'utilise pas de courant toroïdal circulant à l'intérieur du plasma pour le confiner.
Fusion par confinement magnétique
La fusion par confinement magnétique (FCM) est une méthode de confinement utilisée pour porter une quantité de combustible aux conditions de température et de pression désirées pour la fusion nucléaire. De puissants champs électromagnétiques sont employés pour atteindre ces conditions. Le combustible doit au préalable être converti en plasma, celui-ci se laisse ensuite influencer par les champs magnétiques. Il s'agit de la méthode utilisée dans les tokamaks toriques et sphériques, les stellarators et les machines à piège à miroirs magnétiques.
Plasma-facing material
In nuclear fusion power research, the plasma-facing material (or materials) (PFM) is any material used to construct the plasma-facing components (PFC), those components exposed to the plasma within which nuclear fusion occurs, and particularly the material used for the lining the first wall or divertor region of the reactor vessel. Plasma-facing materials for fusion reactor designs must support the overall steps for energy generation, these include: Generating heat through fusion, Capturing heat in the first wall, Transferring heat at a faster rate than capturing heat.
Afficher plus
Publications associées (71)

Experimental study and interpretative modelling of the Power Exhaust in Configurations with Multiple X-Points in TCV

Sophie Danielle Angelica Gorno

Nuclear fusion presents a promising clean energy source to mitigate future energy crises, with magnetic confinement fusion well-positioned to provide a baseload scenario to power future reactors. The unmitigated power exhaust of such reactors threatens its ...
EPFL2024

First-principle based predictions of the effects of negative triangularity on DTT scenarios

Olivier Sauter, Gabriele Merlo, Alberto Mariani

Plasmas with negative triangularity (NT) shape have been recently shown to be able to achieve H-mode levels of confinement in L-mode, avoiding detrimental edge localised modes. Therefore, this plasma geometry is now studied as a possible viable option for ...
Bristol2024

Plasmoid drift and first wall heat deposition during ITER H-mode dual-SPIs in JOREK simulations

Mengdi Kong

The heat flux mitigation during the thermal quench (TQ) by the shattered pellet injection (SPI) is one of the major elements of disruption mitigation strategy for ITER. It's efficiency greatly depends on the SPI and the target plasma parameters, and is ult ...
Iop Publishing Ltd2024
Afficher plus
MOOCs associés (13)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.