Équations de Boussinesqthumb|right|250px|Ondes de gravité à l'entrée d'un port (milieu à profondeur variable). Les équations de Boussinesq en mécanique des fluides désignent un système d'équations d'ondes obtenu par approximation des équations d'Euler pour des écoulements incompressibles irrotationnels à surface libre. Elles permettent de prévoir les ondes de gravité comme ondes cnoïdales, ondes de Stokes, houle, tsunamis, solitons, etc. Ces équations ont été introduites par Joseph Boussinesq en 1872 et sont un exemple d'équations aux dérivées partielles dispersives.
Onde cnoïdalevignette|Bombardiers de la USAAF survolant une houle en eau peu profonde près de la côte du Panama en 1933. Ces crêtes bien définies et ces creux plats sont caractéristiques des ondes cnoïdales. Les ondes cnoïdales sont des ondes de gravité rencontrées sur la surface de la mer, des vagues. Elles sont solutions de l'équation de Korteweg-de Vries où interviennent les fonctions elliptiques de Jacobi notées cn, d'où le nom d'ondes « cn-oïdales ». Ce type d'onde apparaît également dans les problèmes de propagation d'onde acoustique ionique.
Onde de StokesLes ondes de Stokes sont des ondes de gravité rencontrées sur la surface de la mer, des vagues. Elles ont des solutions des équations d'Euler pour un fluide incompressible irrotationnel à surface libre soumis à un champ de gravité qui ont été obtenues par George Gabriel Stokes par la théorie des perturbations en 1847 dans le cas d'un milieu de profondeur infinie. Pour un écoulement incompressible irrotationnel la vitesse dérive d'un potentiel ψ, les équations d'incompressibilité et de quantité de mouvement s'écrivent où ρ est la masse volumique, p la pression, g la gravité et z l'altitude.
Vague scélératevignette|300px|droite|Vague scélérate vue d’un navire marchand (1940, golfe de Gascogne, ligne de sonde des ). Les vagues scélérates sont des vagues océaniques très hautes, soudaines, considérées comme très rares. Cette rareté est relative, les observations ne concernant qu'une très faible partie d'entre elles, compte tenu de l'étendue des océans et de la rapidité avec laquelle les vagues se forment et se défont au sein des trains de vagues où elles se propagent.
Dispersion (water waves)In fluid dynamics, dispersion of water waves generally refers to frequency dispersion, which means that waves of different wavelengths travel at different phase speeds. Water waves, in this context, are waves propagating on the water surface, with gravity and surface tension as the restoring forces. As a result, water with a free surface is generally considered to be a dispersive medium. For a certain water depth, surface gravity waves – i.e.
Internal waveInternal waves are gravity waves that oscillate within a fluid medium, rather than on its surface. To exist, the fluid must be stratified: the density must change (continuously or discontinuously) with depth/height due to changes, for example, in temperature and/or salinity. If the density changes over a small vertical distance (as in the case of the thermocline in lakes and oceans or an atmospheric inversion), the waves propagate horizontally like surface waves, but do so at slower speeds as determined by the density difference of the fluid below and above the interface.
Inverse scattering transformIn mathematics, the inverse scattering transform is a method for solving some non-linear partial differential equations. The method is a non-linear analogue, and in some sense generalization, of the Fourier transform, which itself is applied to solve many linear partial differential equations. The name "inverse scattering method" comes from the key idea of recovering the time evolution of a potential from the time evolution of its scattering data: inverse scattering refers to the problem of recovering a potential from its scattering matrix, as opposed to the direct scattering problem of finding the scattering matrix from the potential.
SolitonUn soliton est une onde solitaire qui se propage sans se déformer dans un milieu non linéaire et dispersif. On en trouve dans de nombreux phénomènes physiques de même qu'ils sont la solution de nombreuses équations aux dérivées partielles non linéaires. thumb|Soliton hydrodynamique. Le phénomène associé a été observé pour la première fois en 1834 par l'Écossais John Scott Russell qui l'a observé initialement en se promenant le long d'un canal : il a suivi pendant plusieurs kilomètres une vague remontant le courant qui ne semblait pas vouloir faiblir.
Ondevignette|Propagation d'une onde. Une onde est la propagation d'une perturbation produisant sur son passage une variation réversible des propriétés physiques locales du milieu. Elle se déplace avec une vitesse déterminée qui dépend des caractéristiques du milieu de propagation. vignette|Une vague s'écrasant sur le rivage. Il existe trois principaux types d'ondes : les ondes mécaniques se propagent à travers une matière physique dont la substance se déforme. Les forces de restauration inversent alors la déformation.
Linear elasticityLinear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics. The fundamental "linearizing" assumptions of linear elasticity are: infinitesimal strains or "small" deformations (or strains) and linear relationships between the components of stress and strain. In addition linear elasticity is valid only for stress states that do not produce yielding.