Neural networkA neural network can refer to a neural circuit of biological neurons (sometimes also called a biological neural network), a network of artificial neurons or nodes in the case of an artificial neural network. Artificial neural networks are used for solving artificial intelligence (AI) problems; they model connections of biological neurons as weights between nodes. A positive weight reflects an excitatory connection, while negative values mean inhibitory connections. All inputs are modified by a weight and summed.
Statistical mechanicsIn physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. It does not assume or postulate any natural laws, but explains the macroscopic behavior of nature from the behavior of such ensembles. Sometimes called statistical physics or statistical thermodynamics, its applications include many problems in the fields of physics, biology, chemistry, and neuroscience.
Neurone formelthumb|Représentation d'un neurone formel (ou logique). Un neurone formel, parfois appelé neurone de McCulloch-Pitts, est une représentation mathématique et informatique d'un neurone biologique. Le neurone formel possède généralement plusieurs entrées et une sortie qui correspondent respectivement aux dendrites et au cône d'émergence du neurone biologique (point de départ de l'axone). Les actions excitatrices et inhibitrices des synapses sont représentées, la plupart du temps, par des coefficients numériques (les poids synaptiques) associés aux entrées.
Régression linéaireEn statistiques, en économétrie et en apprentissage automatique, un modèle de régression linéaire est un modèle de régression qui cherche à établir une relation linéaire entre une variable, dite expliquée, et une ou plusieurs variables, dites explicatives. On parle aussi de modèle linéaire ou de modèle de régression linéaire. Parmi les modèles de régression linéaire, le plus simple est l'ajustement affine. Celui-ci consiste à rechercher la droite permettant d'expliquer le comportement d'une variable statistique y comme étant une fonction affine d'une autre variable statistique x.
Neurosciences cognitivesLes neurosciences cognitives sont le domaine de recherche dans lequel sont étudiés les mécanismes neurobiologiques qui sous-tendent la cognition (perception, motricité, langage, mémoire, raisonnement, émotions...). C'est une branche des sciences cognitives qui fait appel pour une large part aux neurosciences, à la neuropsychologie, à la psychologie cognitive, à l' ainsi qu'à la modélisation.
Generalized least squaresIn statistics, generalized least squares (GLS) is a method used to estimate the unknown parameters in a linear regression model when there is a certain degree of correlation between the residuals in the regression model. Least squares and weighted least squares may need to be more statistically efficient and prevent misleading inferences. GLS was first described by Alexander Aitken in 1935. In standard linear regression models one observes data on n statistical units.
Neurosciencesthumb|250px|Dessin de neurones du cervelet de pigeon par Santiago Ramón y Cajal (1899). Les neurosciences sont les études scientifiques du système nerveux, tant du point de vue de sa structure que de son fonctionnement, depuis l'échelle moléculaire jusqu'au niveau des organes, comme le cerveau, voire de l'organisme tout entier. Le champ de la recherche en neurosciences est un champ transdisciplinaire : la biologie, la chimie, les mathématiques, la bio-informatique ainsi que la neuropsychologie sont utilisées en neurosciences.
Neurophysiologie cliniqueLa neurophysiologie clinique est l'application de l'électrophysiologie à la neurologie, c'est-à-dire la spécialité médicale consacrée à l'étude du système nerveux par l'enregistrement de son activité bioélectrique, qu'elle soit spontanée ou déclenchée par des stimulations. Elle comporte à la fois des activités de recherche concernant la physiopathologie des maladies neurologiques (on parle alors de neurophysiologie expérimentale) et diverses applications adaptées au diagnostic des affections du système nerveux central ou périphérique (on parle alors souvent, dans le monde francophone, d'explorations fonctionnelles du système nerveux).
Simulation de phénomènesLa simulation de phénomènes est un outil utilisé dans le domaine de la recherche et du développement. Elle permet d'étudier les réactions d'un système à différentes contraintes pour en déduire les résultats recherchés en se passant d'expérimentation. Les systèmes technologiques (infrastructures, véhicules, réseaux de communication, de transport ou d'énergie) sont soumis à différentes contraintes et actions. Le moyen le plus simple d'étudier leurs réactions serait d'expérimenter, c'est-à-dire d'exercer l'action souhaitée sur l'élément en cause pour observer ou mesurer le résultat.
StatistiqueLa statistique est la discipline qui étudie des phénomènes à travers la collecte de données, leur traitement, leur analyse, l'interprétation des résultats et leur présentation afin de rendre ces données compréhensibles par tous. C'est à la fois une branche des mathématiques appliquées, une méthode et un ensemble de techniques. ce qui permet de différencier ses applications mathématiques avec une statistique (avec une minuscule). Le pluriel est également souvent utilisé pour la désigner : « les statistiques ».