Innovation ouverteL’Innovation ouverte ou Open Innovation en anglais, parfois aussi Innovation distribuée désignent dans les domaines de la recherche et du développement des modes d'innovation fondés sur le partage, la collaboration (entre parties prenantes). Cette approche est compatible avec une économie de marché (via les brevets et licences) et avec l'Intelligence économique, et permet des approches alternatives éthiques ou solidaires (économie solidaire) de partage libre des savoirs et savoir-faire modernes ou traditionnels, avec notamment l'utilisation de licences libres dans un esprit dit ODOSOS (qui signifie : Open Data, Open Source, Open Standards).
InnovationLinnovation est la recherche constante d'améliorations de l'existant, par contraste avec linvention, qui vise à créer du nouveau. Dans le domaine économique, l'innovation se traduit par la conception d'un nouveau produit, service, processus de fabrication ou d'organisation pouvant être directement mis en œuvre dans l'appareil productif et répondant aux besoins du consommateur. Elle se distingue ainsi de l'invention ou de la découverte par le fait qu'elle peut être immédiatement mise en œuvre par les entreprises, dans le but d'obtenir un avantage compétitif.
Base de GröbnerEn mathématiques, une base de Gröbner (ou base standard, ou base de Buchberger) d'un idéal I de l'anneau de polynômes K[X, ..., X] est un ensemble de générateurs de cet idéal, vérifiant certaines propriétés supplémentaires. Cette notion a été introduite dans les années 1960, indépendamment par Heisuke Hironaka et Bruno Buchberger, qui lui a donné le nom de son directeur de thèse Wolfgang Gröbner. Les bases de Gröbner ont le grand avantage de ramener l'étude des idéaux polynomiaux à l'étude des idéaux monomiaux (c'est-à-dire formés de monômes), plus faciles à appréhender.
Standard basisIn mathematics, the standard basis (also called natural basis or canonical basis) of a coordinate vector space (such as or ) is the set of vectors, each of whose components are all zero, except one that equals 1. For example, in the case of the Euclidean plane formed by the pairs (x, y) of real numbers, the standard basis is formed by the vectors Similarly, the standard basis for the three-dimensional space is formed by vectors Here the vector ex points in the x direction, the vector ey points in the y direction, and the vector ez points in the z direction.
Base (algèbre linéaire)vignette|Le même vecteur peut être représenté dans deux bases différentes (flèches violettes et rouges). En mathématiques, une base d'un espace vectoriel V est une famille de vecteurs de V linéairement indépendants et dont tout vecteur de V est combinaison linéaire. En d'autres termes, une base de V est une famille libre de vecteurs de V qui engendre V. alt=|vignette|upright=2|. La géométrie plane, celle d'Euclide, peut comporter une approche algébrique, celle de Descartes.
Recherche scientifiquevignette|Une laborantine du Laboratoire fédéral d'essai des matériaux et de recherche (EMPA) à Saint-Gall, en 1964. La recherche scientifique est, en premier lieu, l’ensemble des actions entreprises en vue de produire et de développer les connaissances scientifiques. Par extension métonymique, on utilise également ce terme dans le cadre social, économique, institutionnel et juridique de ces actions. thumb|Allégorie de la Recherche, bronze par , 1896, Thomas Jefferson Building.
Cadre d'architectureUn cadre d'architecture est une spécification sur la façon d'organiser et de présenter une architecture de systèmes ou l'architecture informatique d'un organisme. Étant donné que les disciplines de l'architecture de systèmes et de l'architecture informatique sont très larges, et que la taille de ces systèmes peut être très grande, il peut en résulter des modèles très complexes. Afin de gérer cette complexité, il est avantageux de définir un cadre d'architecture par un ensemble standard de catégories de modèles (appelés “vues”) qui ont chacun un objectif spécifique.
Théorème de la base de HilbertIn mathematics, specifically commutative algebra, Hilbert's basis theorem says that a polynomial ring over a Noetherian ring is Noetherian. If is a ring, let denote the ring of polynomials in the indeterminate over . Hilbert proved that if is "not too large", in the sense that if is Noetherian, the same must be true for . Formally, Hilbert's Basis Theorem. If is a Noetherian ring, then is a Noetherian ring. Corollary. If is a Noetherian ring, then is a Noetherian ring.
Recherche médicaleLa recherche médicale se divise en recherche fondamentale et clinique. La recherche médicale fondamentale vise à mieux comprendre le corps humain et ses maladies. La recherche médicale clinique se base sur les résultats de la recherche fondamentale pour inventer et prouver l’efficacité de nouveaux traitements. La recherche fondamentale en médecine vise à mieux comprendre le corps humain et ses maladies. Son spectre est très large et largement lié aux autres sciences.
Cadre ZachmanLe cadre Zachman est un cadre d'architecture d'entreprise qui permet d'une manière formelle et hautement structurée de définir le système d'information d'une entreprise. Il utilise un modèle de classification à deux dimensions basé sur : six interrogations de base : Quoi, Comment, Où, Qui, Quand, et Pourquoi (What, How, Where, Who, When, Why), qui croisent six types de modèles distincts qui se rapportent à des groupes de parties prenantes : Visionnaire, Propriétaire, Concepteur, Réalisateur, Sous-traitant et Exécutant (visionary, owner, designer, builder, implementer, worker) pour présenter une vue holistique de l'entreprise qui est modélisée.