An Approach for Imitation Learning on Riemannian Manifolds
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Numerical continuation in the context of optimization can be used to mitigate convergence issues due to a poor initial guess. In this work, we extend this idea to Riemannian optimization problems, that is, the minimization of a target function on a Riemann ...
Daily manipulation tasks are characterized by regular features associated with the task structure, which can be described by multiple geometric primitives related to actions and object shapes. Only using Cartesian coordinate systems cannot fully represent ...
Many robotics problems are formulated as optimization problems. However, most optimization solvers in robotics are locally optimal and the performance depends a lot on the initial guess. For challenging problems, the solver will often get stuck at poor loc ...
We propose a structured prediction approach for robot imitation learning from demonstrations. Among various tools for robot imitation learning, supervised learning has been observed to have a prominent role. Structured prediction is a form of supervised le ...
This article presents an overview of robot learning and adaptive control applications that can benefit from a joint use of Riemannian geometry and probabilistic representations. The roles of Riemannian manifolds, geodesics and parallel transport in robotic ...
Probability distributions are key components of many learning from demonstration (LfD) approaches, with the spaces chosen to represent tasks playing a central role. Although the robot configuration is defined by its joint angles, end-effector poses are oft ...
The purpose of this thesis is to provide an intrinsic proof of a Gauss-Bonnet-Chern formula for complete Riemannian manifolds with finitely many conical singularities and asymptotically conical ends. A geometric invariant is associated to the link of both ...
Humans exhibit outstanding learning and adaptation capabilities while performing various types of manipulation tasks. When learning new skills, humans are able to extract important information by observing examples of a task and efficiently refine a priori ...
In this paper, we provide a simple pedagogical proof of the existence of covariant renormalizations in Euclidean perturbative quantum field theory on closed Riemannian manifolds, following the Epstein–Glaser philosophy. We rely on a local method that allow ...
The geodesic flows are studied on real forms of complex semi-simple Lie groups with respect to a left-invariant (pseudo-)Riemannian metric of rigid body type. The Williamson types of the isolated relative equilibria on generic adjoint orbits are determined ...