Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In this paper we aim at integrating the selection of a nesting structure to the maximum likelihood framework of the parameter estimation. Given a finite set of nesting structures, the traditional approach is to estimate the models corresponding to each of them and select a posteriori the most appropriate one based on some fit statistics and informal testing procedures. However, the number of possible nesting structures grows as a function of the number of alternatives. Our approach simultaneously solves the problem of selecting the optimal nesting structure and estimating its corresponding parameters with maximum likelihood. We call this discrete-continuous maximum likelihood (DCML). We are able to linearize the logarithm in the objective function so that it results in a mixed integer linear problem.
Jean-Yves Le Boudec, Mario Paolone, Arpan Mukhopadhyay
Alexandre Massoud Alahi, Virginie Janine Camille Lurkin
Michel Bierlaire, Timothy Michael Hillel, Janody Pougala