Réseau neuronal convolutifEn apprentissage automatique, un réseau de neurones convolutifs ou réseau de neurones à convolution (en anglais CNN ou ConvNet pour convolutional neural networks) est un type de réseau de neurones artificiels acycliques (feed-forward), dans lequel le motif de connexion entre les neurones est inspiré par le cortex visuel des animaux. Les neurones de cette région du cerveau sont arrangés de sorte qu'ils correspondent à des régions qui se chevauchent lors du pavage du champ visuel.
Réalité augmentéeLa réalité augmentée est la superposition de la réalité et d'éléments (sons, images 2D, 3D, vidéos) calculés par un système informatique en temps réel. Elle désigne souvent les différentes méthodes qui permettent d'incruster de façon réaliste des objets virtuels dans une séquence d'images. Elle s'applique aussi bien à la perception visuelle (superposition d'images virtuelles aux images réelles) qu'aux perceptions proprioceptives comme les perceptions tactiles ou auditives.
Réalité mixtevignette|Un exemple de réalité mixte, montrant des personnages virtuels mélangés dans un flux en direct du monde réel. La réalité mixte (RM ; en anglais : mixed reality, MR) est la fusion de mondes réels et virtuels pour produire de nouveaux environnements et visualisations, où les objets physiques et numériques coexistent et interagissent en temps réel. La réalité mixte ne se déroule pas exclusivement dans le monde physique ou virtuel, mais est un hybride de réalité et de réalité virtuelle, englobant à la fois la réalité augmentée et la virtualité augmentée par le biais de la technologie immersive.
Réalité étendueLa réalité étendue est la mise en œuvre de technologies de réalité augmentée (AR), de réalité virtuelle (VR) et de réalité mixte (MR) en un seul terme générique. Parfois, on utilise l'acronyme (pour eXtended Reality en anglais) pour désigner l'ensemble de ces technologies. L'objectif de la technologie est de fusionner ou de refléter le monde physique avec un qui peut interagir avec lui. La réalité virtuelle et la réalité augmentée connaissent une croissance rapide et sont actuellement utilisées dans de nombreux domaines différents, tels que le divertissement, le marketing, l'immobilier, la formation et le travail à distance.
Réalité virtuellevignette|250x250px|Personnel de l'U.S. Navy utilisant un simulateur de parachute. L'expression « réalité virtuelle » (ou multimédia immersif ou réalité simulée par ordinateur) renvoie typiquement à une technologie informatique qui simule la présence physique d'un utilisateur dans un environnement artificiellement généré par des logiciels. La réalité virtuelle crée un environnement avec lequel l'utilisateur peut interagir. La réalité virtuelle reproduit donc artificiellement une expérience sensorielle, qui peut inclure la vue, le toucher, l'ouïe et l'odorat (visuelle, sonore ou haptique).
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Réseau neuronal résidueldroite|vignette| Forme canonique d'un réseau neuronal résiduel. Une couche l − 1 est ignoré sur l'activation de l − 2. Un réseau neuronal résiduel ( ResNet ) est un réseau neuronal artificiel (ANN). Il s'agit d'une variante du HighwayNet , le premier réseau neuronal à action directe très profond avec des centaines de couches, beaucoup plus profond que les réseaux neuronaux précédents. Les sauts de connexion ou "raccourcis" sont utilisés pour passer par-dessus certaines couches ( les HighwayNets peuvent également avoir des poids pour les saut eux-mêmes, grâce à une matrice de poids supplémentaire pour leurs portes).
Réseaux antagonistes génératifsEn intelligence artificielle, les réseaux antagonistes génératifs (RAG) parfois aussi appelés réseaux adverses génératifs (en anglais generative adversarial networks ou GANs) sont une classe d'algorithmes d'apprentissage non supervisé. Ces algorithmes ont été introduits par . Ils permettent de générer des images avec un fort degré de réalisme. Un GAN est un modèle génératif où deux réseaux sont placés en compétition dans un scénario de théorie des jeux. Le premier réseau est le générateur, il génère un échantillon (ex.
Path tracingvignette|Image d'une scène 3D constituée de trois sphères, obtenue par path tracing. Le path tracing est une technique de lancer de rayon (ray tracing), utilisée pour déterminer l'illumination globale d'une scène 3D en résolvant l'équation du rendu. L'image finale est générée par une constitution progressive : d'abord un brouillard de pixels, elle s'affine progressivement jusqu'à être débarrassée presque complètement de son « grain ». Le path tracing a été introduit par James Kajiya en 1986.
Deepfakevignette|Deepfake sur Kim Jong-Un. Le deepfake , ou hypertrucage, est une technique de synthèse multimédia reposant sur l'intelligence artificielle. Elle peut servir à superposer des fichiers vidéo ou audio existants sur d'autres fichiers vidéo (par exemple changer le visage d'une personne sur une vidéo) ou audio (par exemple reproduire la voix d'une personne pour lui faire dire des choses inventées). Cette technique peut être utilisée pour créer des infox et des canulars malveillants.