Théorie de la fonctionnelle de la densitéLa théorie de la fonctionnelle de la densité (DFT, sigle pour Density Functional Theory) est une méthode de calcul quantique permettant l'étude de la structure électronique, en principe de manière exacte. Au début du , il s'agit de l'une des méthodes les plus utilisées dans les calculs quantiques aussi bien en physique de la matière condensée qu'en chimie quantique en raison de son application possible à des systèmes de tailles très variées, allant de quelques atomes à plusieurs centaines.
Réseau métallo-organiquevignette|Exemple de MOF avec différents ligands organiques. Les réseaux métallo-organiques (MOF, pour l'anglais metal–organic framework) sont des solides poreux hybrides cristallins constitués d'ions métalliques ou de clusters coordonnés à des ligands organiques pour former des structures en une, deux ou trois dimensions. Les MOF présentent notamment une surface spécifique très élevée du fait de leur structure nanoporeuse. Les MOF sont nommés selon leur lieu de découverte suivi d’un numéro d’incrémentation, par exemple MIL-101 pour Matériaux Institut Lavoisier , ou UiO-66.
Analyse fonctionnelle (mathématiques)L'analyse fonctionnelle est la branche des mathématiques et plus particulièrement de l'analyse qui étudie les espaces de fonctions. Elle prend ses racines historiques dans l'étude des transformations telles que la transformation de Fourier et dans l'étude des équations différentielles ou intégro-différentielles. Le terme fonctionnelle trouve son origine dans le cadre du calcul des variations, pour désigner des fonctions dont les arguments sont des fonctions.
FonctionnelleIn mathematics, a functional (as a noun) is a certain type of function. The exact definition of the term varies depending on the subfield (and sometimes even the author). In linear algebra, it is synonymous with linear forms, which are linear mappings from a vector space into its field of scalars (that is, they are elements of the dual space ) In functional analysis and related fields, it refers more generally to a mapping from a space into the field of real or complex numbers.
Forme linéaireEn algèbre linéaire, une forme linéaire sur un espace vectoriel est une application linéaire sur son corps de base. En dimension finie, elle peut être représentée par une matrice ligne qui permet d’associer à son noyau une équation cartésienne. Dans le cadre du calcul tensoriel, une forme linéaire est aussi appelée covecteur, en lien avec l’action différente des matrices de changement de base.
Énergie de liaisonL'énergie de liaison d'un système de corps en interaction (atomes ou particules) est l'énergie nécessaire pour le dissocier. En chimie et en physique atomique l'énergie de liaison, dite aussi chaleur d'atomisation ou enthalpie de liaison, a pour origine l'interaction électromagnétique. En physique nucléaire l'énergie de liaison a pour origine l'interaction forte (notamment, entre quarks) et à un moindre degré l'interaction faible (pour les nucléides radioactifs β). Énergie de liaison (chimie) Énergie de dis
Méthode ab initio de chimie quantiqueLes méthodes ab initio de chimie quantique sont des méthodes de chimie numérique basées sur la chimie quantique. La méthode ab initio la plus simple de calcul de structure électronique est le schéma Hartree-Fock (HF), dans laquelle la répulsion coulombienne électron-électron n'est pas spécifiquement prise en compte. Seul son effet moyen est inclus dans le calcul. Lorsque la taille de la base est augmentée, l'énergie et la fonction d'onde tendent vers une limite appelée limite Hartree-Fock.
Mécanique moléculairevignette|Physique à l'échelle moléculaire La mécanique moléculaire correspond à l'utilisation de la mécanique newtonienne pour modéliser la structure des systèmes moléculaires. L'approche de la mécanique moléculaire est souvent appliquée pour améliorer des structures moléculaires ou des simulations utilisant soit la dynamique moléculaire, soit la méthode de Monte-Carlo. Typiquement, la mécanique moléculaire considère l'ensemble des interactions entre une collection d'atomes sphériques reliés entre eux par des ressorts fictifs qui représentent les liaisons chimiques.
Fonctionnelle de MinkowskiEn géométrie, la notion de jauge généralise celle de semi-norme. À toute partie C d'un R-espace vectoriel E on associe sa jauge, ou fonctionnelle de Minkowski p, qui est une application de E dans [0, +∞] mesurant, pour chaque vecteur, par quel rapport il faut dilater C pour englober ce vecteur. Dès que C contient l'origine, p est positivement homogène ; si C est étoilée par rapport p possède d'autres propriétés élémentaires. Si C est convexe — cas le plus souvent étudié — p est même sous-linéaire, mais elle n'est pas nécessairement symétrique et elle peut prendre des valeurs infinies.
Liaison nucléaireLa liaison nucléaire est le phénomène qui assure la cohésion d'un noyau atomique. Le noyau atomique est composé de protons de charge électrique positive, et de neutrons de charge électrique nulle. La répulsion coulombienne tend à séparer les protons. C'est la force nucléaire qui permet d'assurer la stabilité du noyau. L'énergie de liaison E d'un noyau atomique est l'énergie qu'il faut fournir au noyau pour le dissocier en ses nucléons, qui s'attirent du fait de la force nucléaire, force qui correspond à l’interaction forte résiduelle.