Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We present a new algorithm, trimed, for obtaining the medoid of a set, that is the element of the set which minimises the mean distance to all other elements. The algorithm is shown to have, under weak assumptions, complexity O(N^(3/2)) in R^d where N is the set size, making it the first sub-quadratic exact medoid algorithm for d>1. Experiments show that it performs very well on spatial network data, frequently requiring two orders of magnitude fewer distances than state-of-the-art approximate algorithms. We show how trimed can be used as a component in an accelerated K-medoids algorithm, and how it can be relaxed to obtain further computational gains with an only minor loss in quality.
Tatiana Pieloni, Claudia Tambasco
David Rodriguez Martinez, Daniel Tataru, Erik Uythoven, Thomas Pfeiffer