Learning Aerial Image Segmentation from Online Maps
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Deep learning has revolutionalized image-level tasks such as classification, but patch-level tasks, such as correspondence, still rely on hand-crafted features, e.g. SIFT. In this paper we use Convolutional Neural Networks (CNNs) to learn discriminant patc ...
A common assumption in machine vision is that the training and test samples are drawn from the same distribution. However, there are many problems when this assumption is grossly violated, as in bio-medical applications where different acquisitions can gen ...
We propose an algorithm to learn from distributed data on a network of arbitrarily connected machines without exchange of the data-points. Parts of the dataset are processed locally at each machine, and then the consensus communication algorithm is employe ...
In this paper we revisit the recently proposed triphone mapping as an alternative to decision tree state clustering. We generalize triphone mapping to Kullback-Leibler based hidden Markov models for acoustic modeling and propose a modified training procedu ...
We show how nonlinear embedding algorithms popular for use with "shallow" semi-supervised learning techniques such as kernel methods can be easily applied to deep multi-layer architectures, either as a regularizer at the output layer, or on each layer of t ...
Is it possible to teach workers while crowdsourcing classification tasks? Amongst the challenges: (a) workers have different (unknown) skills, competence, and learning rate to which the teaching must be adapted, (b) feedback on the workers’ progress is lim ...
We revisit a recently developed iterative learning algorithm that enables systems to learn from a repeated operation with the goal of achieving high tracking performance of a given trajectory. The learning scheme is based on a coarse dynamics model of the ...
One of the main challenge in non-native speech recognition is how to handle acoustic variability present in multiaccented non-native speech with limited amount of training data. In this paper, we investigate an approach that addresses this challenge by usi ...
In this paper we revisit the recently proposed triphone mapping as an alternative to decision tree state clustering. We generalize triphone mapping to Kullback-Leibler based hidden Markov models for acoustic modeling and propose a modified training procedu ...
Automatic recognition of gestures using computer vision is important for many real-world applications such as sign language recognition and human-robot interaction (HRI). Our goal is a real-time hand gesture-based HRI interface for mobile robots. We use a ...