Publication

A Bi-Criteria Approximation Algorithm for k-Means

Justin Dean Ward
2016
Article de conférence
Résumé

We consider the classical k-means clustering problem in the setting of bi-criteria approximation, in which an algorithm is allowed to output betak > k clusters, and must produce a clustering with cost at most alpha times the to the cost of the optimal set of k clusters. We argue that this approach is natural in many settings, for which the exact number of clusters is a priori unknown, or unimportant up to a constant factor. We give new bi-criteria approximation algorithms, based on linear programming and local search, respectively, which attain a guarantee alpha(beta) depending on the number betak of clusters that may be opened. Our guarantee alpha(beta) is always at most 9 + epsilon and improves rapidly with beta (for example: alpha(2) < 2.59, and alpha(3) < 1.4). Moreover, our algorithms have only polynomial dependence on the dimension of the input data, and so are applicable in high-dimensional settings.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.