WordNetWordNet est une base de données lexicale développée par des linguistes du laboratoire des sciences cognitives de l'université de Princeton depuis une vingtaine d'années. Son but est de répertorier, classifier et mettre en relation de diverses manières le contenu sémantique et lexical de la langue anglaise. Des versions de WordNet pour d'autres langues existent, mais la version anglaise est cependant la plus complète à ce jour. La base de données ainsi que des outils sont disponibles gratuitement.
BabelNetBabelNet est un réseau sémantique multilingue et une ontologie lexicalisée. BabelNet a été créé en intégrant automatiquement la plus grande encyclopédie multilingue – c’est-à-dire Wikipédia – avec le lexique de la langue anglaise le plus connu – WordNet. L’intégration a été réalisée par correspondance automatique. Les entrées manquantes dans d'autres langues ont été obtenues par des techniques de traduction automatique.
Semantic lexiconA semantic lexicon is a digital dictionary of words labeled with semantic classes so associations can be drawn between words that have not previously been encountered. Semantic lexicons are built upon semantic networks, which represent the semantic relations between words. The difference between a semantic lexicon and a semantic network is that a semantic lexicon has definitions for each word, or a "gloss". Semantic lexicons are made up of lexical entries. These entries are not orthographic, but semantic, eliminating issues of homonymy and polysemy.
Lexical Markup FrameworkLexical Markup Framework (LMF ou cadre de balisage lexical, en français) est le standard de l'Organisation internationale de normalisation (plus spécifiquement au sein de l'ISO/TC37) pour les lexiques du traitement automatique des langues (TAL). L'objectif est la normalisation des principes et méthodes relatifs aux ressources langagières dans le contexte de la communication multilingue et de la diversité culturelle.
Traitement automatique du langage naturelLe traitement automatique du langage naturel (TALN), en anglais natural language processing ou NLP, est un domaine multidisciplinaire impliquant la linguistique, l'informatique et l'intelligence artificielle, qui vise à créer des outils de traitement du langage naturel pour diverses applications. Il ne doit pas être confondu avec la linguistique informatique, qui vise à comprendre les langues au moyen d'outils informatiques.
Extraction de connaissancesL'extraction de connaissances est le processus de création de connaissances à partir d'informations structurées (bases de données relationnelles, XML) ou non structurées (textes, documents, images). Le résultat doit être dans un format lisible par les ordinateurs. Le groupe RDB2RDF W3C est en cours de standardisation d'un langage d'extraction de connaissances au format RDF à partir de bases de données. En français on parle d'« extraction de connaissances à partir des données » (ECD).
Fouille de textesLa fouille de textes ou « l'extraction de connaissances » dans les textes est une spécialisation de la fouille de données et fait partie du domaine de l'intelligence artificielle. Cette technique est souvent désignée sous l'anglicisme text mining. Elle désigne un ensemble de traitements informatiques consistant à extraire des connaissances selon un critère de nouveauté ou de similarité dans des textes produits par des humains pour des humains.
Graphe de connaissancesDans le domaine de la représentation des connaissances, un graphe de connaissances (knowledge graph en anglais) est une base de connaissance modélisant les données sous forme de représentation graphique. Depuis le développement du web sémantique, les graphes de connaissances sont souvent associés aux projets de données ouvertes du web des données, visant surtout à connecter les concepts et entités. Ils sont fortement liés aux et utilisés par les moteurs de recherches, dont certains, tels Google, ont développé leur propre graphe de connaissances.
Exactitude et précisionvignette|Schéma de l'exactitude et la précision appliquée à des lancers de fléchettes. Dans la mesure d'un ensemble, l'exactitude est la proximité des mesures à une valeur spécifique, tandis que la précision est la proximité des mesures les unes par rapport aux autres. L'exactitude a deux définitions : Plus communément, il s'agit d'une description des erreurs systématiques, une mesure du biais statistique ; une faible précision entraîne une différence entre un résultat et une valeur « vraie ».
Validation croiséeLa validation croisée () est, en apprentissage automatique, une méthode d’estimation de fiabilité d’un modèle fondée sur une technique d’échantillonnage. Supposons posséder un modèle statistique avec un ou plusieurs paramètres inconnus, et un ensemble de données d'apprentissage sur lequel on peut apprendre (ou « entraîner ») le modèle. Le processus d'apprentissage optimise les paramètres du modèle afin que celui-ci corresponde le mieux possible aux données d'apprentissage.