Densité spectrale de puissanceOn définit la densité spectrale de puissance (DSP en abrégé, Power Spectral Density ou PSD en anglais) comme étant le carré du module de la transformée de Fourier, divisé par le temps d'intégration, (ou, plus rigoureusement, la limite quand tend vers l'infini de l'espérance mathématique du carré du module de la transformée de Fourier du signal - on parle alors de densité spectrale de puissance moyenne).
Attaque des anniversairesUne attaque des anniversaires ou attaque par le paradoxe des anniversaires est un type d’attaque en cryptanalyse qui exploite des notions mathématiques équivalentes à celles qu’utilise le paradoxe des anniversaires en théorie des probabilités. L'objet de l'attaque consiste à comparer entre elles les méthodes de chiffrement de plusieurs sources jusqu'à ce que deux d'entre elles correspondent. Cette attaque peut être utilisée pour modifier les communications entre deux personnes ou plus.
Modèle discriminatifDiscriminative models, also referred to as conditional models, are a class of logistical models used for classification or regression. They distinguish decision boundaries through observed data, such as pass/fail, win/lose, alive/dead or healthy/sick. Typical discriminative models include logistic regression (LR), conditional random fields (CRFs) (specified over an undirected graph), decision trees, and many others. Typical generative model approaches include naive Bayes classifiers, Gaussian mixture models, variational autoencoders, generative adversarial networks and others.
Classifieur linéaireEn apprentissage automatique, les classifieurs linéaires sont une famille d'algorithmes de classement statistique. Le rôle d'un classifieur est de classer dans des groupes (des classes) les échantillons qui ont des propriétés similaires, mesurées sur des observations. Un classifieur linéaire est un type particulier de classifieur, qui calcule la décision par combinaison linéaire des échantillons. « Classifieur linéaire » est une traduction de l'anglais linear classifier.
Renseignement d'origine électromagnétiquevignette|400px|Dupuy-de-Lôme, navire collecteur de renseignements d'origine électromagnétique de la Marine nationale française. Le renseignement d'origine électromagnétique ou ROEM (en anglais : signals intelligence ou SIGINT) est un renseignement dont les sources d'information sont des signaux électromagnétiques : communications utilisant les ondes (radio, satellitaire), émissions d'ondes faites par un radar ou par des instruments de télémesure.
Champ aléatoire conditionnelLes champs aléatoires conditionnels (conditional random fields ou CRFs) sont une classe de modèles statistiques utilisés en reconnaissance des formes et plus généralement en apprentissage statistique. Les CRFs permettent de prendre en compte l'interaction de variables « voisines ». Ils sont souvent utilisés pour des données séquentielles (langage naturel, séquences biologiques, vision par ordinateur). Les CRFs sont un exemple de réseau probabiliste non orienté.
Processus autorégressifUn processus autorégressif est un modèle de régression pour séries temporelles dans lequel la série est expliquée par ses valeurs passées plutôt que par d'autres variables. Un processus autorégressif d'ordre p, noté AR(p) est donné par : où sont les paramètres du modèle, est une constante et un bruit blanc. En utilisant l'opérateur des retards, on peut l'écrire : Un processus autorégressif d'ordre 1 s'écrit : On peut formuler le processus AR(1) de manière récursive par rapport aux conditions précédentes : En remontant aux valeurs initiales, on aboutit à : Il est à noter que les sommes vont ici jusqu'à l'infini.
Processus unifiéLe processus unifié (PU), ou « unified process (UP) » en anglais, ou « Unified Software Development Process (USDP) » est une famille de méthodes de développement de logiciels orientés objets. Elle se caractérise par une démarche itérative et incrémentale, pilotée par les cas d'utilisation, et centrée sur l'architecture et les modèles UML. Elle définit un processus intégrant toutes les activités de conception et de réalisation au sein de cycles de développement composés d'une phase de création, d'une phase d'élaboration, d'une phase de construction et d'une phase de transition, comprenant chacune plusieurs itérations.
Long short-term memoryLong short-term memory (LSTM) network is a recurrent neural network (RNN), aimed to deal with the vanishing gradient problem present in traditional RNNs. Its relative insensitivity to gap length is its advantage over other RNNs, hidden Markov models and other sequence learning methods. It aims to provide a short-term memory for RNN that can last thousands of timesteps, thus "long short-term memory".
Matrice aléatoireEn théorie des probabilités et en physique mathématique, une matrice aléatoire est une matrice dont les éléments sont des variables aléatoires. La théorie des matrices aléatoires a pour objectif de comprendre certaines propriétés de ces matrices, comme leur norme d'opérateur, leurs valeurs propres ou leurs valeurs singulières. Face à la complexité croissante des spectres nucléaires observés expérimentalement dans les années 1950, Wigner a suggéré de remplacer l'opérateur hamiltonien du noyau par une matrice aléatoire.