Résumé
Une attaque des anniversaires ou attaque par le paradoxe des anniversaires est un type d’attaque en cryptanalyse qui exploite des notions mathématiques équivalentes à celles qu’utilise le paradoxe des anniversaires en théorie des probabilités. L'objet de l'attaque consiste à comparer entre elles les méthodes de chiffrement de plusieurs sources jusqu'à ce que deux d'entre elles correspondent. Cette attaque peut être utilisée pour modifier les communications entre deux personnes ou plus. L’attaque est possible grâce à la probabilité plus élevée de collisions avec des tentatives d’attaques aléatoires et un niveau fixe de permutations, comme dans le principe des tiroirs. Paradoxe des anniversaires Comme exemple du paradoxe des anniversaires, il est possible de considérer le scénario suivant. Intuitivement, la probabilité que cela arrive paraît faible. Si l’enseignant prenait un jour spécifique, par exemple le , alors la probabilité qu’au moins un élève soit né ce jour spécifique est , soit environ 7,9 %. Par contre, la probabilité qu’au moins un élève ait la même date d’anniversaire que n’importe lequel des autres élèves est environ égale à 70 %, soit : avec . Contrairement à d'autres attaques, celle-ci n'exploite pas une vulnérabilité du système mais seulement le fait que les valeurs de hachage ne soient pas très nombreuses. L'objectif est de trouver des collisions dans les hachages cryptographiques, par comparaison des valeurs de hachages entre un grand nombre d'ensemble de données. Par exemple en exploitant un grand nombre de signatures numériques, l'attaque des anniversaires peut statistiquement par la force brute découvrir au moins utilisant le même cryptage. Le criminel peut alors créer de faux certificats qui semblent authentiques. Soit une fonction le but de l’attaque est de trouver deux antécédents différents tels que Une telle paire est appelée une collision. La méthode utilisée pour trouver une collision est simplement de comparer l’ de pour différents antécédents qui peuvent être choisis de façon aléatoire ou pseudo-aléatoire jusqu'à ce que le même résultat soit trouvé plus d’une fois.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.