Chromatinealt=Compaction de l'ADN dans la chromatine|vignette|upright=1.9|Compaction de l'ADN au sein de la chromatine. De gauche à droite : l'ADN, le nucléosome, le nucléofilament, la fibre de 30 nm et le chromosome métaphasique. La chromatine est la structure au sein de laquelle l'ADN se trouve empaqueté et compacté dans le volume limité du noyau des cellules eucaryotes. La chromatine est constituée d'une association d'ADN, d'ARN et de protéines de deux types : histones et non-histones. C'est le constituant principal des chromosomes eucaryotes.
Remodelage de la chromatineLe remodelage de la chromatine est l'un des trois mécanismes de modification de la structure de la chromatine. Intervenant d'abord au cours de l'étape de maturation de la chromatine, il permet l'obtention d'un certain état final de sa structure. Plusieurs protéines sont impliquées dans ce processus de remodelage (familles SW1/SNF, ISW1, INO, CHD). Ces protéines, appelées facteurs de remodelage de la chromatine, forment des complexes multi-protéiques et utilisent l'énergie libérée par l'hydrolyse de l'ATP pour induire des changements conformationnels au niveau du nucléosome et des domaines de la chromatine.
HistoneLes histones sont des protéines localisées dans le noyau des cellules eucaryotes et dans les archées. Elles sont les principaux constituants protéiques des chromosomes. Elles sont en effet étroitement associées à l’ADN dont elles permettent la compaction, cette action formant des structures appelées nucléosomes : l'ADN est enroulé autour des histones comme du fil autour d'une bobine. Les histones sont très riches en acides aminés basiques (lysine et arginine), dont la charge positive à pH physiologique permet une interaction forte avec les groupements phosphate de l'ADN qui portent des charges négatives.
Interaction protéine-protéinethumb|upright=1.2|L'inhibiteur de la ribonucléase en forme de fer à cheval (en représentation « fil de fer ») forme une interaction protéine–protéine avec la protéine de la ribonucléase. Les contacts entre les deux protéines sont représentés sous forme de taches colorées. Une Interaction protéine–protéine apparait lorsque deux ou plusieurs protéines se lient entre elles, le plus souvent pour mener à bien leur fonction biologique.
Nucléosomevignette|Schéma de trois nucléosomes mis bout à bout, formant une partie d'un nucléofilament de 11 nm. Le nucléosome est un complexe comportant un segment d’ADN de 146 ou 147 paires de nucléotides, enroulé autour d'un cœur formé de protéines (les histones). Chez les eucaryotes, le nucléosome constitue l’unité de base d'organisation de la chromatine. Il représente le premier niveau de compaction de l’ADN dans le noyau, on compare souvent sa géométrie à celle d'un fil enroulé autour d'une bobine.
Expression génétiqueL'expression des gènes, encore appelée expression génique ou expression génétique, désigne l'ensemble des processus biochimiques par lesquels l'information héréditaire stockée dans un gène est lue pour aboutir à la fabrication de molécules qui auront un rôle actif dans le fonctionnement cellulaire, comme les protéines ou les ARN. Même si toutes les cellules d'un organisme partagent le même génome, certains gènes ne sont exprimés que dans certaines cellules, à certaines périodes de la vie de l'organisme ou sous certaines conditions.
Histone désacétylaseUne histone désacétylase (abrégé HDAC) est une enzyme catalysant la perte du groupement acétyl sur la queue N-terminale d'une histone. Leur rôle est l'inverse de celui tenu par les histone acétyltransférases. Les histone désacétylases jouent un rôle important dans la régulation de l'expression génétique. thumb|right|(Dés)acétylation d'un histoneVert : chaîne polypeptidiqueBleu : chaine latérale (Lys)Orange : groupement modifiable D'une manière générale, l'intervention des HDAC entraîne une baisse d'expression au niveau des zones concernées du génome.
Régulation de l'expression des gènesLa régulation de l'expression des gènes désigne l'ensemble de mécanismes mis en œuvre pour passer de l'information génétique incluse dans une séquence d'ADN à un produit de gène fonctionnel (ARN ou protéine). Elle a pour effet de moduler, d'augmenter ou de diminuer la quantité des produits de l'expression des gènes (ARN, protéines). Toutes les étapes allant de la séquence d'ADN au produit final peuvent être régulées, que ce soit la transcription, la maturation des ARNm, la traduction des ARNm ou la stabilité des ARNm et protéines.
Modification post-traductionnelleUne modification post-traductionnelle est une modification chimique d'une protéine, réalisée le plus souvent par une enzyme, après sa synthèse ou au cours de sa vie dans la cellule. Généralement cette modification entraîne un changement de la fonction de la protéine considérée, que ce soit au niveau de son action, de sa demi-vie, ou de sa localisation cellulaire.
Protéine GLes sont une famille de protéines qui permettent le transfert d'informations à l'intérieur de la cellule. Elles participent ainsi à un mécanisme appelé transduction du signal. Cette protéine est appelée ainsi car elle utilise l'échange de GTP en GDP comme un « interrupteur moléculaire » pour déclencher ou inhiber des réactions biochimiques dans la cellule. La protéine G se lie au GTP et au GDP. Alfred G. Gilman et Martin Rodbell ont obtenu le prix Nobel de physiologie ou médecine en 1994 pour sa découverte et leurs travaux sur les protéines G.