OrbitonLes orbitons sont l'une des trois quasi-particules, avec les chargeons et les spinons, qui résultent de la division des électrons contenus dans les solides au cours du processus de séparation spin-charge, se produisant lorsqu'ils sont extrêmement confinés et à des températures proches du zéro absolu. L'électron peut toujours être théoriquement considéré comme un état lié des trois quasi-particules, avec le spinon portant le spin de l'électron, l'orbiton caractérisant l'orbitale atomique et le chargeon portant la charge électrique, mais dans certaines conditions ils peuvent se comporter comme des particules indépendantes.
Extension radicielleDans la théorie des extensions de corps, à l'opposé des extensions algébriques séparables, il existe les extensions radicielles. C'est un phénomène spécifique à la caractéristique positive et qui apparaît naturellement avec les corps de fonctions en caractéristique positive. Soit une extension de corps de caractéristique . Un élément de est dit radiciel sur s'il existe un entier tel que . Une extension (algébrique) est une extension radicielle si tout élément de est radiciel sur .
Cohérence (physique)La cohérence en physique est l'ensemble des propriétés de corrélation d'un système ondulatoire. Son sens initial était la mesure de la capacité d'onde(s) à donner naissances à des interférences — du fait de l'existence d'une relation de phase définie — mais il s'est élargi. On peut parler de cohérence entre 2 ondes, entre les valeurs d'une même onde à deux instants différents (cohérence temporelle) ou entre les valeurs d'une même onde à deux endroits différents (cohérence spatiale).
Extension de corpsEn mathématiques, plus particulièrement en algèbre, une extension d'un corps commutatif K est un corps L qui contient K comme sous-corps. Par exemple, le corps C des nombres complexes est une extension du corps R des nombres réels, lequel est lui-même une extension du corps Q des nombres rationnels. On note parfois L/K pour indiquer que L est une extension de K. Soit K un corps. Une extension de K est un couple (L, j) où L est un corps et j un morphisme de corps de K dans L (les morphismes de corps étant systématiquement injectifs).