Résumé
En mathématiques, plus particulièrement en algèbre, une extension d'un corps commutatif K est un corps L qui contient K comme sous-corps. Par exemple, le corps C des nombres complexes est une extension du corps R des nombres réels, lequel est lui-même une extension du corps Q des nombres rationnels. On note parfois L/K pour indiquer que L est une extension de K. Soit K un corps. Une extension de K est un couple (L, j) où L est un corps et j un morphisme de corps de K dans L (les morphismes de corps étant systématiquement injectifs). On montre qu'il existe un sur-corps N de K et un isomorphisme de corps f : N → L tels que la restriction de f à K soit égale à j. Ainsi l'extension (L, j) peut être identifiée à l'extension (N, i) avec l'inclusion i. Pour cette raison, les extensions d'un corps sont généralement considérées comme des sur-corps. Cependant, certaines constructions d'extensions ne sont pas naturellement des sur-corps (par exemple le corps de rupture) et la définition d'extension ci-dessus permet plus de souplesse). Une sous-extension de L/K est un sous-corps de L contenant K. Si V est un sous-ensemble de L, alors on définit le corps K(V) comme le plus petit sous-corps de L contenant K et V. Il est constitué des éléments de L pouvant être obtenus à partir d'éléments de K et de V grâce à un nombre fini d'additions, de multiplications et d'inversions, ou encore : pouvant être obtenus en appliquant à des éléments de V une fraction rationnelle (à plusieurs variables) à coefficients dans K. Si L = K(V), on dit que L est engendré par V. Morphismes d'extensions. Si E, F sont des extensions de K, un morphisme (ou K-morphisme) de E dans F est un morphisme d'anneaux qui vaut l'identité sur K. Un tel morphisme est toujours injectif car son noyau est un idéal propre de E. Un isomorphisme de K-extensions est un K-morphisme surjectif (donc bijectif) entre deux extensions de K. Un automorphisme de K-extensions est un K-morphisme surjectif (donc bijectif) d'une extension de K dans elle-même.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.