En mathématiques, plus particulièrement en algèbre, une extension d'un corps commutatif K est un corps L qui contient K comme sous-corps. Par exemple, le corps C des nombres complexes est une extension du corps R des nombres réels, lequel est lui-même une extension du corps Q des nombres rationnels. On note parfois L/K pour indiquer que L est une extension de K. Soit K un corps. Une extension de K est un couple (L, j) où L est un corps et j un morphisme de corps de K dans L (les morphismes de corps étant systématiquement injectifs). On montre qu'il existe un sur-corps N de K et un isomorphisme de corps f : N → L tels que la restriction de f à K soit égale à j. Ainsi l'extension (L, j) peut être identifiée à l'extension (N, i) avec l'inclusion i. Pour cette raison, les extensions d'un corps sont généralement considérées comme des sur-corps. Cependant, certaines constructions d'extensions ne sont pas naturellement des sur-corps (par exemple le corps de rupture) et la définition d'extension ci-dessus permet plus de souplesse). Une sous-extension de L/K est un sous-corps de L contenant K. Si V est un sous-ensemble de L, alors on définit le corps K(V) comme le plus petit sous-corps de L contenant K et V. Il est constitué des éléments de L pouvant être obtenus à partir d'éléments de K et de V grâce à un nombre fini d'additions, de multiplications et d'inversions, ou encore : pouvant être obtenus en appliquant à des éléments de V une fraction rationnelle (à plusieurs variables) à coefficients dans K. Si L = K(V), on dit que L est engendré par V. Morphismes d'extensions. Si E, F sont des extensions de K, un morphisme (ou K-morphisme) de E dans F est un morphisme d'anneaux qui vaut l'identité sur K. Un tel morphisme est toujours injectif car son noyau est un idéal propre de E. Un isomorphisme de K-extensions est un K-morphisme surjectif (donc bijectif) entre deux extensions de K. Un automorphisme de K-extensions est un K-morphisme surjectif (donc bijectif) d'une extension de K dans elle-même.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.