Prévision d'ensemblesvignette|En haut: Modèle déterministe du WRF pour la prévision de trajectoire de l'ouragan Rita en 2005. En bas : Dispersion des différents modèles utilisés par le National Hurricane Center pour la même tempête. La prévision d'ensembles est une méthode de prévision numérique du temps utilisé pour tenter de générer un échantillon représentatif des états futurs possibles d'un système dynamique. En effet, ni les observations, ni l'analyse, ni le modèle de prévision ne sont parfaits et la dynamique atmosphérique est très sensible, dans certaines conditions, à la moindre fluctuation.
Global Forecast Systemvignette|Exemple de carte produite par le GFS, prévision des isohypses de géopotentiel et des isothermes de température à la pression de dans l'atmosphère, le tout valide 96 heures après le moment d’initialisation Le Global Forecast System (GFS) est un modèle de prévision numérique du temps du National Weather Service des États-Unis. Comme son nom l'indique, il fait ses calculs en utilisant les données météorologiques sur une grille qui recouvre toute la Terre. Ce modèle numérique est initialisé quatre fois par jour : 5h30, 11h30, 17h30 et 23h30.
PrécipitationsLes précipitations désignent toutes les formes de l'eau à l'état liquide ou solide provenant de l'atmosphère. Ces hydrométéores (cristaux de glace ou gouttelettes d'eau), ayant été soumis à des processus de condensation et d'agrégation à l'intérieur des nuages, sont devenus trop lourds pour demeurer en suspension dans l'atmosphère et tombent au sol ou s'évaporent en virga avant de l'atteindre. Les précipitations se caractérisent par trois principaux paramètres : leur volume, leur intensité et leur fréquence qui varient selon les lieux et les périodes (jours, mois ou années).
Technology forecastingTechnology forecasting attempts to predict the future characteristics of useful technological machines, procedures or techniques. Researchers create technology forecasts based on past experience and current technological developments. Like other forecasts, technology forecasting can be helpful for both public and private organizations to make smart decisions. By analyzing future opportunities and threats, the forecaster can improve decisions in order to achieve maximum benefits.
Forecast skillIn the fields of forecasting and prediction, forecasting skill or prediction skill is any measure of the accuracy and/or degree of association of prediction to an observation or estimate of the actual value of what is being predicted (formally, the predictand); it may be quantified as a skill score. In meteorology, more specifically in weather forecasting, skill measures the superiority of a forecast over a simple historical baseline of past observations.
Inférence bayésiennevignette|Illustration comparant les approches fréquentiste et bayésienne (Christophe Michel, 2018). L’inférence bayésienne est une méthode d'inférence statistique par laquelle on calcule les probabilités de diverses causes hypothétiques à partir de l'observation d'événements connus. Elle s'appuie principalement sur le théorème de Bayes. Le raisonnement bayésien construit, à partir d'observations, une probabilité de la cause d'un type d'événements.
Hydrological transport modelAn hydrological transport model is a mathematical model used to simulate the flow of rivers, streams, groundwater movement or drainage front displacement, and calculate water quality parameters. These models generally came into use in the 1960s and 1970s when demand for numerical forecasting of water quality and drainage was driven by environmental legislation, and at a similar time widespread access to significant computer power became available.
Hydrologievignette|upright=1.5|Le cycle de l'eau Lhydrologie (du grec , « eau », et , « étude ») est la science qui s'intéresse à tous les aspects du cycle de l'eau, et en particulier aux échanges entre la mer, l'atmosphère (océanographie, climatologie...), la surface terrestre (limnologie) et le sous-sol (hydrogéologie), sur terre (ou potentiellement sur d'autre planètes). L'hydrologue contribue à la connaissance et gestion des ressources en eau et à leur durabilité en rapport avec les bassins versants environnementaux.
Statistique bayésienneLa statistique bayésienne est une approche statistique fondée sur l'inférence bayésienne, où la probabilité exprime un degré de croyance en un événement. Le degré initial de croyance peut être basé sur des connaissances a priori, telles que les résultats d'expériences antérieures, ou sur des croyances personnelles concernant l'événement. La perspective bayésienne diffère d'un certain nombre d'autres interprétations de la probabilité, comme l'interprétation fréquentiste qui considère la probabilité comme la limite de la fréquence relative d'un événement après de nombreux essais.
Réseau bayésienEn informatique et en statistique, un réseau bayésien est un modèle graphique probabiliste représentant un ensemble de variables aléatoires sous la forme d'un graphe orienté acyclique. Intuitivement, un réseau bayésien est à la fois : un modèle de représentation des connaissances ; une « machine à calculer » des probabilités conditionnelles une base pour des systèmes d'aide à la décision Pour un domaine donné (par exemple médical), on décrit les relations causales entre variables d'intérêt par un graphe.