Synchrotron light sourceA synchrotron light source is a source of electromagnetic radiation (EM) usually produced by a storage ring, for scientific and technical purposes. First observed in synchrotrons, synchrotron light is now produced by storage rings and other specialized particle accelerators, typically accelerating electrons. Once the high-energy electron beam has been generated, it is directed into auxiliary components such as bending magnets and insertion devices (undulators or wigglers) in storage rings and free electron lasers.
SynchrotronUn synchrotron est un instrument électromagnétique de grande taille destiné à l'accélération à haute énergie de particules élémentaires. Le plus grand accélérateur de type synchrotron est le Grand collisionneur de hadrons (LHC) de 27 kilomètres de circonférence, proche de Genève en Suisse, construit en 2008 par l'Organisation européenne pour la recherche nucléaire (CERN). Le principe du synchrotron a été presenté pendant la seconde guerre mondiale, en 1943, par le Oliphant à Birmingham.
Accélérateur de particulesUn accélérateur de particules est un instrument qui utilise des champs électriques ou magnétiques pour amener des particules chargées électriquement à des vitesses élevées. En d'autres termes, il communique de l'énergie aux particules. On en distingue deux grandes catégories : les accélérateurs linéaires et les accélérateurs circulaires. En 2004, il y avait plus de dans le monde. Une centaine seulement sont de très grosses installations, nationales ou supranationales.
Laser à électrons libresUn laser à électrons libres (en free electron laser : FEL) est un type de laser qui fonctionne en utilisant des électrons qui ne sont pas liés à un atome, d’où l'adjectif « libres », pour créer des photons. La lumière produite est à la fois cohérente, intense et peut avoir une longueur d'onde située dans une large gamme, depuis les micro-ondes jusqu'aux rayons X durs, en passant par l'ultra-violet, le domaine visible et l'infrarouge. Les lasers à électrons libres ont été suggérés en 1971 par le physicien John M.
Rayonnement synchrotronLe rayonnement synchrotron, ou rayonnement de courbure, est un rayonnement électromagnétique émis par une particule chargée qui se déplace dans un champ magnétique et dont la trajectoire est déviée par ce champ magnétique. Ce rayonnement est émis en particulier par des électrons qui tournent dans un anneau de stockage. Puisque ces particules modifient régulièrement leur course, leur vitesse change régulièrement, elles émettent alors de l'énergie (sous forme de photons) qui correspond à l’accélération subie.
Accélérateur linéairethumb|upright=1.8|Diagramme animé montrant le fonctionnement d'un accélérateur linéaire thumb|Partie d'un accélérateur linéaire situé à Clayton, Victoria, Australie. Un accélérateur linéaire est un dispositif permettant d'accélérer des particules chargées afin de leur fournir une énergie cinétique importante dans le but de produire des réactions avec la matière. Les particules accélérées peuvent être des électrons, des protons, ou bien des ions lourds.
Grand collisionneur électron-positronLe grand collisionneur électron-positron (en anglais : Large Electron Positron collider : LEP) était un accélérateur de particules circulaire de de circonférence, passant sous le site du CERN entre la France et la Suisse. En fonction de 1989 à 2000, le LEP demeure le plus puissant collisionneur de leptons jamais construit. vignette|Plan du complexe d'accélérateurs du CERN (le LHC remplace depuis 2008 le LEP). Les physiciens des pays membres du CERN ont développé l'idée du LEP vers la fin des années 1970.
ÉlectronL'électron, un des composants de l'atome avec les neutrons et les protons, est une particule élémentaire qui possède une charge élémentaire de signe négatif. Il est fondamental en chimie, car il participe à presque tous les types de réactions chimiques et constitue un élément primordial des liaisons présentes dans les molécules. En physique, l'électron intervient dans une multitude de rayonnements et d'effets.
Détecteur de rayons XLes détecteurs de rayons X sont des dispositifs capables de détecter la présence de rayons X. La technologie de détection des rayons X a fortement progressé depuis leur découverte, passant du simple film photographique à des dispositifs électroniques pouvant donner le flux de rayons X et leur énergie. Les rayons X sont des rayonnements ionisants : ils éjectent des électrons de la matière par effet photoélectrique ou effet Compton. C'est ce phénomène qui est utilisé pour la détection.
Spectrométrie photoélectronique Xvignette|upright=1.4|Machine XPS avec un analyseur de masse (A), des lentilles électromagnétiques (B), une chambre d'ultra-vide (C), une source de rayon X (D) et une pompe à vide (E) La spectrométrie photoélectronique X, ou spectrométrie de photoélectrons induits par rayons X (en anglais, X-Ray photoelectron spectrometry : XPS) est une méthode de spectrométrie photoélectronique qui implique la mesure des spectres de photoélectrons induits par des photons de rayon X.