Théorie des bandesredresse=1.5|vignette|Représentation schématique des bandes d'énergie d'un solide. représente le niveau de Fermi. thumb|upright=1.5|Animation sur le point de vue quantique sur les métaux et isolants liée à la théorie des bandes En physique de l'état solide, la théorie des bandes est une modélisation des valeurs d'énergie que peuvent prendre les électrons d'un solide à l'intérieur de celui-ci. De façon générale, ces électrons n'ont la possibilité de prendre que des valeurs d'énergie comprises dans certains intervalles, lesquels sont séparés par des bandes d'énergie interdites (ou bandes interdites).
Acquisition compriméeL'acquisition comprimée (en anglais compressed sensing) est une technique permettant de trouver la solution la plus parcimonieuse d'un système linéaire sous-déterminé. Elle englobe non seulement les moyens pour trouver cette solution mais aussi les systèmes linéaires qui sont admissibles. En anglais, elle porte le nom de Compressive sensing, Compressed Sampling ou Sparse Sampling.
Numerical cognitionNumerical cognition is a subdiscipline of cognitive science that studies the cognitive, developmental and neural bases of numbers and mathematics. As with many cognitive science endeavors, this is a highly interdisciplinary topic, and includes researchers in cognitive psychology, developmental psychology, neuroscience and cognitive linguistics. This discipline, although it may interact with questions in the philosophy of mathematics, is primarily concerned with empirical questions.
Algorithme de KaratsubaEn informatique, l'algorithme de Karatsuba est un algorithme pour multiplier rapidement deux nombres de n chiffres avec une complexité temporelle en O(n) ≈ O(n) au lieu de O(n) pour la méthode naïve. Il a été développé par Anatolii Alexevich Karatsuba en 1960 et publié en 1962 . Pour multiplier deux nombres de n chiffres, la méthode naïve multiplie chaque chiffre du multiplicateur par chaque chiffre du multiplicande. Cela exige donc n produits de deux chiffres. Le temps de calcul est en O(n2).