Plug&Play brain-computer interfaces for effective active and assisted living control
Publications associées (40)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
People with severe motor disabilities (spinal cord injury (SCI), amyotrophic lateral sclerosis (ALS), etc.) but with intact brain functions are somehow prisoners of their own body. They need alternative ways of communication and control to interact with th ...
People with severe motor disabilities (spinal cord injury (SCI), amyotrophic lateral sclerosis (ALS), etc.) but with intact brain functions are somehow prisoners of their own body. They need alternative ways of communication and control to interact with th ...
The dream of controlling and guiding computer-based systems using human brain signals has slowly but steadily become a reality. The available technology allows real-time implementation of systems that measure neuronal activity, convert their signals, and t ...
By directly analyzing brain activity, Brain-Computer Interfaces (BCIs) allow for communication that does not rely on any muscular control and therefore constitute a possible communication channel for the completely paralyzed. Typically, the user performs d ...
A BCI allows a person to communicate with the external world using artificial electronic or mechanical devices controlled by means of brain signals. Present-day BCIs can be divided into invasive and noninvasive. Prospective application of invasive BCIs to ...
A Brain-Computer Interface (BCI) is a system that allows its users to control external devices with brain activity. Although the proof-of-concept was given decades ago, the reliable translation of user intent into device control commands is still a major c ...
Recent experiments have shown the possibility to use the brain electrical activity to directly control the movement of robots or prosthetic devices in real time. Such neuroprostheses can be invasive or non-invasive, depending on how the brain signals are r ...
The Electroencephalogram (EEG) is a recording of the electrical potentials generated by brain activity on the scalp. It has been used for decades as a non-invasive tool both in fundamental brain research and in clinical diagnosis. But it is now widely used ...
A Brain-Computer Interface (BCI) allow direct expression of its user�s will by interpreting signals which directly reflect the brain�s activity, thus bypassing the natural efferent channels (nerves and muscles). To be correctly mastered, it is needed t ...
We present a training and testing method for Input-Output Hidden Markov Model that is particularly suited for classification of sequences in which class information accumulates over time. We discuss two such cases: the discrimination of mental tasks from s ...