Publication

Sequence Classification with Input-Output Hidden Markov Models

Samy Bengio, Silvia Chiappa
2004
Rapport ou document de travail
Résumé

We present a training and testing method for Input-Output Hidden Markov Model that is particularly suited for classification of sequences in which class information accumulates over time. We discuss two such cases: the discrimination of mental tasks from sequences of EEG features, common in Brain Computer Interface research, and phoneme classification from sequences of acoustic features for speech recognition. The objective function is modified so that training focuses on the improvement of classification accuracy. For both tasks the algorithm performs significantly better than the alternative solution proposed in the literature, specifically designed for other types of sequences.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.