Visualisation de donnéesvignette|upright=2|Carte figurative des pertes successives en hommes de l'armée française dans la campagne de Russie 1812-1813, par Charles Minard, 1869. La visualisation des données (ou dataviz ou représentation graphique de données) est un ensemble de méthodes permettant de résumer de manière graphique des données statistiques qualitatives et surtout quantitatives afin de montrer les liens entre des ensembles de ces données. Cette fait partie de la science des données.
GéostatistiqueLa géostatistique est l'étude des variables régionalisées, à la frontière entre les mathématiques et les sciences de la Terre. Son principal domaine d'utilisation a historiquement été l'estimation des gisements miniers, mais son domaine d'application actuel est beaucoup plus large et tout phénomène spatialisé peut être étudié en utilisant la géostatistique. L'histoire de la géostatistique est liée à l'estimation des gisements exploités dans les mines. Dans les années 1950, un professeur de l'université du Witwatersrand en Afrique du Sud, Danie G.
Science des donnéesLa science des données est l'étude de l’extraction automatisée de connaissance à partir de grands ensembles de données. Plus précisément, la science des données est un domaine interdisciplinaire qui utilise des méthodes, des processus, des algorithmes et des systèmes scientifiques pour extraire des connaissances et des idées à partir de nombreuses données structurées ou non . Elle est souvent associée aux données massives et à l'analyse des données.
Mesh (objet)Un en ou maillage est un objet tridimensionnel constitué de sommets, d'arêtes et de faces organisés en polygones sous forme de fil de fer dans une infographie tridimensionnelle. Les faces se composent généralement de triangles, de quadrilatères ou d'autres polygones convexes simples, car cela simplifie le rendu. Les faces peuvent être combinées pour former des polygones concaves plus complexes, ou des polygones avec des trous. L'étude des en fait partie importante de l'infographie tridimensionnelle.
Exploration de donnéesL’exploration de données, connue aussi sous l'expression de fouille de données, forage de données, prospection de données, data mining, ou encore extraction de connaissances à partir de données, a pour objet l’extraction d'un savoir ou d'une connaissance à partir de grandes quantités de données, par des méthodes automatiques ou semi-automatiques.
Données ouvertesvignette|Autocollants utilisés par les militants des données ouvertes. Les données ouvertes (en anglais : open data) sont des données numériques dont l'accès et l'usage sont laissés libres aux usagers, qui peuvent être d'origine privée mais surtout publique, produites notamment par une collectivité ou un établissement public. Elles sont diffusées de manière structurée selon une méthode et une licence ouverte garantissant leur libre accès et leur réutilisation par tous, sans restriction technique, juridique ou financière.
Qualité des donnéesLa qualité des données, en informatique se réfère à la conformité des données aux usages prévus, dans les modes opératoires, les processus, les prises de décision, et la planification (J.M. Juran). De même, les données sont jugées de grande qualité si elles représentent correctement la réalité à laquelle elles se réfèrent. Ces deux points de vue peuvent souvent entrer en contradiction, y compris lorsqu'un même ensemble de données est utilisé avec un objectif commun.
GéoinformatiqueLa géoinformatique est un terme générique désignant l'ensemble des sciences liant la science de l'information avec les sciences terrestres et géographiques. Les sciences géoinformatiques se basent sur l'information géographique et la géodésie. La géoinformatique fait partie de la géomatique mais se concentre sur la dimension de stockage et de visualisation de l'information géographique. Cartographie en ligne Catégorie:Sciences de la Terre Catégorie:Information géographique Catégorie:Branche de la géographi
Statistical graphicsStatistical graphics, also known as statistical graphical techniques, are graphics used in the field of statistics for data visualization. Whereas statistics and data analysis procedures generally yield their output in numeric or tabular form, graphical techniques allow such results to be displayed in some sort of pictorial form. They include plots such as scatter plots, histograms, probability plots, spaghetti plots, residual plots, box plots, block plots and biplots. Exploratory data analysis (EDA) relies heavily on such techniques.
KrigeageLe krigeage est, en géostatistique, la méthode d’estimation linéaire garantissant le minimum de variance. Le krigeage réalise l'interpolation spatiale d'une variable régionalisée par calcul de l'espérance mathématique d'une variable aléatoire, utilisant l'interprétation et la modélisation du variogramme expérimental. C'est le meilleur estimateur linéaire non biaisé ; il se fonde sur une méthode objective. Il tient compte non seulement de la distance entre les données et le point d'estimation, mais également des distances entre les données deux à deux.