Scalable Low-rank Matrix and Tensor Decomposition on Graphs
Publications associées (88)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The remarkable ability of deep learning (DL) models to approximate high-dimensional functions from samples has sparked a revolution across numerous scientific and industrial domains that cannot be overemphasized. In sensitive applications, the good perform ...
In this work we introduce a manifold learning-based method for uncertainty quantification (UQ) in systems describing complex spatiotemporal processes. Our first objective is to identify the embedding of a set of high-dimensional data representing quantitie ...
Given a hyperelliptic hyperbolic surface S of genus g >= 2, we find bounds on the lengths of homologically independent loops on S. As a consequence, we show that for any lambda is an element of (0, 1) there exists a constant N(lambda) such that every such ...
The quantification of uncertainties can be particularly challenging for problems requiring long-time integration as the structure of the random solution might considerably change over time. In this respect, dynamical low-rank approximation (DLRA) is very a ...
We generalize the class vectors found in neural networks to linear subspaces (i.e., points in the Grassmann manifold) and show that the Grassmann Class Representation (GCR) enables simultaneous improvement in accuracy and feature transferability. In GCR, e ...
Reduced-order models are indispensable for multi-query or real-time problems. However, there are still many challenges to constructing efficient ROMs for time-dependent parametrized problems. Using a linear reduced space is inefficient for time-dependent n ...
We use the theory of foliations to study the relative canonical divisor of a normalized inseparable base-change. Our main technical theorem states that it is linearly equivalent to a divisor with positive integer coefficients divisible by p - 1. We deduce ...
Kernel methods are fundamental tools in machine learning that allow detection of non-linear dependencies between data without explicitly constructing feature vectors in high dimensional spaces. A major disadvantage of kernel methods is their poor scalabili ...
We give an information-theoretic interpretation of Canonical Correlation Analysis (CCA) via (relaxed) Wyner's common information. CCA permits to extract from two high-dimensional data sets low-dimensional descriptions (features) that capture the commonalit ...
Edge-based and face-based smoothed finite element methods (ES-FEM and FS-FEM, respectively) are modified versions of the finite element method allowing to achieve more accurate results and to reduce sensitivity to mesh distortion, at least for linear eleme ...