Publication

Non-intrusive data-driven reduced-order modeling for time-dependent parametrized problems

Résumé

Reduced-order models are indispensable for multi-query or real-time problems. However, there are still many challenges to constructing efficient ROMs for time-dependent parametrized problems. Using a linear reduced space is inefficient for time-dependent nonlinear problems, especially for transport-dominated problems. The non-linearity usually needs to be addressed by hyper-reduction techniques, such as DEIM, but it is intrusive and relies on the assumption of affine dependence of parameters. This paper proposes and studies a non-intrusive reduced -order modeling approach for time-dependent parametrized problems. It is purely data-driven and naturally split into offline and online stages. During the offline stage, a convolutional autoencoder, consisting of an encoder and a decoder, is trained to perform dimensionality reduction. The encoder compresses the full-order solution snapshots to a nonlinear manifold or a low-dimensional reduced/latent space. The decoder allows the recovery of the full-order solution from the latent space. To deal with the time-dependent problems, a high-order dynamic mode decomposition (HODMD) is utilized to model the trajectories in the latent space for each parameter. During the online stage, the HODMD models are first utilized to obtain the latent variables at a new time, then interpolation techniques are adopted to recover the latent variables at a new parameter value, and the full-order solution is recovered by the decoder. Some numerical tests are conducted to show that the approach can be used to predict the unseen full-order solution at new times and parameter values fast and accurately, including transport-dominated problems.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.