RenormalisationEn théorie quantique des champs (ou QFT), en mécanique statistique des champs, dans la théorie des structures géométriques autosimilaires, une renormalisation est une manière, variable dans sa nature, de prendre la limite du continu quand certaines constructions statistiques et quantiques deviennent indéfinies. La renormalisation détermine la façon de relier les paramètres de la théorie quand ces paramètres à grande échelle diffèrent de leur valeur à petite échelle.
Causal dynamical triangulationCausal dynamical triangulation (abbreviated as CDT), theorized by Renate Loll, Jan Ambjørn and Jerzy Jurkiewicz, is an approach to quantum gravity that, like loop quantum gravity, is background independent. This means that it does not assume any pre-existing arena (dimensional space) but, rather, attempts to show how the spacetime fabric itself evolves. There is evidence that, at large scales, CDT approximates the familiar 4-dimensional spacetime but shows spacetime to be 2-dimensional near the Planck scale, and reveals a fractal structure on slices of constant time.
GravitationLa gravitation, l'une des quatre interactions fondamentales qui régissent l'Univers, est l' physique responsable de l'attraction des corps massifs. Elle se manifeste notamment par l'attraction terrestre qui nous retient au sol, la gravité, qui est responsable de plusieurs manifestations naturelles; les marées, l'orbite des planètes autour du Soleil, la sphéricité de la plupart des corps célestes en sont quelques exemples. D'une manière plus générale, la structure à grande échelle de l'Univers est déterminée par la gravitation.
Induced gravityInduced gravity (or emergent gravity) is an idea in quantum gravity that spacetime curvature and its dynamics emerge as a mean field approximation of underlying microscopic degrees of freedom, similar to the fluid mechanics approximation of Bose–Einstein condensates. The concept was originally proposed by Andrei Sakharov in 1967. Sakharov observed that many condensed matter systems give rise to emergent phenomena that are analogous to general relativity. For example, crystal defects can look like curvature and torsion in an Einstein–Cartan spacetime.
Espace de Minkowskithumb|Représentation schématique de l'espace de Minkowski, qui montre seulement deux des trois dimensions spatiales. En géométrie et en relativité restreinte, l'espace de Minkowski du nom de son inventeur Hermann Minkowski, appelé aussi l'espace-temps de Minkowski ou parfois l'espace-temps de Poincaré-Minkowski, est un espace mathématique, et plus précisément un espace affine pseudo-euclidien à quatre dimensions, modélisant l'espace-temps de la relativité restreinte : les propriétés géométriques de cet espace correspondent à des propriétés physiques présentes dans cette théorie.
Vitesse de la gravitéDans le cadre des théories relativistes, la notion de vitesse de la gravité renvoie à la vitesse des ondes gravitationnelles qui, telle que prédite par la relativité générale et confirmée notamment par l'observation du signal GW170817, est identique à la vitesse de la lumière. La vitesse des ondes gravitationnelles selon la relativité générale égale la vitesse de la lumière dans le vide, c . Dans le cadre de la relativité restreinte, la constante c ne s'applique pas seulement à la lumière (qui fait partie des ondes électromagnétiques).
DilatonEn physique théorique, le dilaton désignait à l'origine un champ scalaire théorique (comme le photon réfère à un champ électromagnétique). Le dilaton apparaît dans la théorie de Kaluza-Klein et obéit à une équation ondulaire non homogène, généralisant l'équation de Klein-Gordon, avec un champ électromagnétique très fort comme source : De plus, dans la théorie des cordes, le dilaton est une particule d'un champ scalaire qui peut être vu comme la trace du graviton ; un champ scalaire (suivant l'équation Klein-Gordon) qui vient toujours avec la gravité.
Beta function (physics)In theoretical physics, specifically quantum field theory, a beta function, β(g), encodes the dependence of a coupling parameter, g, on the energy scale, μ, of a given physical process described by quantum field theory. It is defined as and, because of the underlying renormalization group, it has no explicit dependence on μ, so it only depends on μ implicitly through g. This dependence on the energy scale thus specified is known as the running of the coupling parameter, a fundamental feature of scale-dependence in quantum field theory, and its explicit computation is achievable through a variety of mathematical techniques.
Fonction bêtathumb|Variations de la fonction bêta pour les valeurs positives de x et y En mathématiques, la fonction bêta est une des deux intégrales d'Euler, définie pour tous nombres complexes x et y de parties réelles strictement positives par : et éventuellement prolongée analytiquement à tout le plan complexe à l'exception des entiers négatifs. La fonction bêta a été étudiée par Euler et Legendre et doit son nom à Jacques Binet. Elle est en relation avec la fonction gamma.
Ultravioletvignette|redresse=1.5|Diagramme montrant le spectre électromagnétique dans lequel se distinguent plusieurs domaines spectraux (dont celui des UV) en fonction des longueurs d'onde (avec des exemples de tailles), les fréquences correspondantes, et les températures du corps noir dont l'émission est maximum à ces longueurs d'onde. Le rayonnement ultraviolet (UV), également appelé « lumière noire » parce que généralement invisible à l’œil nu, est un rayonnement électromagnétique de longueur d'onde inférieure à celle de la lumière visible, mais supérieure à celle des .