Résumé
In theoretical physics, specifically quantum field theory, a beta function, β(g), encodes the dependence of a coupling parameter, g, on the energy scale, μ, of a given physical process described by quantum field theory. It is defined as and, because of the underlying renormalization group, it has no explicit dependence on μ, so it only depends on μ implicitly through g. This dependence on the energy scale thus specified is known as the running of the coupling parameter, a fundamental feature of scale-dependence in quantum field theory, and its explicit computation is achievable through a variety of mathematical techniques. If the beta functions of a quantum field theory vanish, usually at particular values of the coupling parameters, then the theory is said to be scale-invariant. Almost all scale-invariant QFTs are also conformally invariant. The study of such theories is conformal field theory. The coupling parameters of a quantum field theory can run even if the corresponding classical field theory is scale-invariant. In this case, the non-zero beta function tells us that the classical scale invariance is anomalous. Beta functions are usually computed in some kind of approximation scheme. An example is perturbation theory, where one assumes that the coupling parameters are small. One can then make an expansion in powers of the coupling parameters and truncate the higher-order terms (also known as higher loop contributions, due to the number of loops in the corresponding Feynman graphs). Here are some examples of beta functions computed in perturbation theory: Quantum electrodynamics The one-loop beta function in quantum electrodynamics (QED) is or, equivalently, written in terms of the fine structure constant in natural units, α = e2/4π. This beta function tells us that the coupling increases with increasing energy scale, and QED becomes strongly coupled at high energy. In fact, the coupling apparently becomes infinite at some finite energy, resulting in a Landau pole.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (6)
PHYS-741: Gauge Theories and the Standard Model
The goal of this course is to explain the conceptual and mathematical bases of the Standard Model of fundamental interactions and to illustrate in detail its phenomenological consequences.
PHYS-739: Conformal Field theory and Gravity
This course is an introduction to the non-perturbative bootstrap approach to Conformal Field Theory and to the Gauge/Gravity duality, emphasizing the fruitful interplay between these two ideas.
PHYS-415: Particle physics I
Presentation of particle properties, their symmetries and interactions. Introduction to quantum electrodynamics and to the Feynman rules.
Afficher plus
Publications associées (93)
Concepts associés (16)
Boson de Higgs
thumb|De gauche à droite : Kibble, Guralnik, Hagen, Englert et Brout, en 2010. Le boson de Higgs ou boson BEH, est une particule élémentaire dont l'existence, postulée indépendamment en juin 1964 par François Englert et Robert Brout, par Peter Higgs, en août, et par Gerald Guralnik, Carl Richard Hagen et Thomas Kibble, permet d'expliquer la brisure de l'interaction unifiée électrofaible (EWSB, pour l'anglais ) en deux interactions par l'intermédiaire du mécanisme de Brout-Englert-Higgs-Hagen-Guralnik-Kibble et d'expliquer ainsi pourquoi certaines particules ont une masse et d'autres n'en ont pas.
Length scale
In physics, length scale is a particular length or distance determined with the precision of at most a few orders of magnitude. The concept of length scale is particularly important because physical phenomena of different length scales cannot affect each other and are said to decouple. The decoupling of different length scales makes it possible to have a self-consistent theory that only describes the relevant length scales for a given problem.
Interaction de Yukawa
En physique des particules, l'interaction de Yukawa est une interaction entre un champ scalaire φ et un champ de Dirac ψ de type : (scalaire) ou (pseudoscalaire). Cette interaction porte le nom du physicien japonais Hideki Yukawa. Cette interaction s'effectue entre les nucléons d'un atome et permet de maintenir le noyau atomique en place. Cette interaction consiste pour les nucléons de s'échanger des pion (particule) qui peuvent transformer des neutrons en protons et vice-versa.
Afficher plus