Résumé
In mathematics, the beta function, also called the Euler integral of the first kind, is a special function that is closely related to the gamma function and to binomial coefficients. It is defined by the integral for complex number inputs such that . The beta function was studied by Leonhard Euler and Adrien-Marie Legendre and was given its name by Jacques Binet; its symbol Β is a Greek capital beta. The beta function is symmetric, meaning that for all inputs and . A key property of the beta function is its close relationship to the gamma function: A proof is given below in . The beta function is also closely related to binomial coefficients. When m (or n, by symmetry) is a positive integer, it follows from the definition of the gamma function Γ that A simple derivation of the relation can be found in Emil Artin's book The Gamma Function, page 18–19. To derive this relation, write the product of two factorials as Changing variables by u = st and v = s(1 − t), because u + v = s and u / (u+v) = t, we have that the limits of integrations for s are 0 to ∞ and the limits of integration for t are 0 to 1. Thus produces Dividing both sides by gives the desired result. The stated identity may be seen as a particular case of the identity for the integral of a convolution. Taking one has: We have where denotes the polygamma function. Stirling's approximation gives the asymptotic formula for large x and large y. If on the other hand x is large and y is fixed, then The integral defining the beta function may be rewritten in a variety of ways, including the following: where in the second-to-last identity n is any positive real number. One may move from the first integral to the second one by substituting .
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (11)
MATH-101(g): Analysis I
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
EE-566: Adaptation and learning
In this course, students learn to design and master algorithms and core concepts related to inference and learning from data and the foundations of adaptation and learning theories with applications.
Afficher plus
Publications associées (77)
Concepts associés (10)
Loi de Fisher
En théorie des probabilités et en statistiques, la loi de Fisher ou encore loi de Fisher-Snedecor ou encore loi F de Snedecor est une loi de probabilité continue. Elle tire son nom des statisticiens Ronald Aylmer Fisher et George Snedecor. La loi de Fisher survient très fréquemment en tant que loi de la statistique de test lorsque l'hypothèse nulle est vraie, dans des tests statistiques, comme les tests du ratio de vraisemblance, dans les tests de Chow utilisés en économétrie, ou encore dans l'analyse de la variance (ANOVA) via le test de Fisher.
Conjugate prior
In Bayesian probability theory, if the posterior distribution is in the same probability distribution family as the prior probability distribution , the prior and posterior are then called conjugate distributions, and the prior is called a conjugate prior for the likelihood function . A conjugate prior is an algebraic convenience, giving a closed-form expression for the posterior; otherwise, numerical integration may be necessary. Further, conjugate priors may give intuition by more transparently showing how a likelihood function updates a prior distribution.
Loi bêta-binomiale
En théorie des probabilités, la loi bêta-binomiale est une loi de probabilité discrète à support fini, correspondant à un processus de tirages Bernoulli dont la probabilité de succès est aléatoire (suivant une loi bêta). Elle est fréquemment utilisée en inférence bayésienne. La loi de Bernoulli en est un cas particulier pour le paramètre n = 1. Pour α = β = 1, elle correspond à la loi uniforme discrète sur {0,..,n} . Elle approche également la loi binomiale lorsque les paramètres α et β sont arbitrairement grands.
Afficher plus