In mathematics, the beta function, also called the Euler integral of the first kind, is a special function that is closely related to the gamma function and to binomial coefficients. It is defined by the integral for complex number inputs such that . The beta function was studied by Leonhard Euler and Adrien-Marie Legendre and was given its name by Jacques Binet; its symbol Β is a Greek capital beta. The beta function is symmetric, meaning that for all inputs and . A key property of the beta function is its close relationship to the gamma function: A proof is given below in . The beta function is also closely related to binomial coefficients. When m (or n, by symmetry) is a positive integer, it follows from the definition of the gamma function Γ that A simple derivation of the relation can be found in Emil Artin's book The Gamma Function, page 18–19. To derive this relation, write the product of two factorials as Changing variables by u = st and v = s(1 − t), because u + v = s and u / (u+v) = t, we have that the limits of integrations for s are 0 to ∞ and the limits of integration for t are 0 to 1. Thus produces Dividing both sides by gives the desired result. The stated identity may be seen as a particular case of the identity for the integral of a convolution. Taking one has: We have where denotes the polygamma function. Stirling's approximation gives the asymptotic formula for large x and large y. If on the other hand x is large and y is fixed, then The integral defining the beta function may be rewritten in a variety of ways, including the following: where in the second-to-last identity n is any positive real number. One may move from the first integral to the second one by substituting .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (11)
MATH-101(g): Analysis I
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
EE-566: Adaptation and learning
In this course, students learn to design and master algorithms and core concepts related to inference and learning from data and the foundations of adaptation and learning theories with applications.
Afficher plus
Séances de cours associées (40)
Inférence bayésienne : Variables gaussiennes
Explore l'inférence bayésienne pour les variables aléatoires gaussiennes, couvrant la distribution articulaire, les pdf marginaux et le classificateur Bayes.
Principes de base de l'analyse et de la gestion des risques
Présente les bases de l'analyse et de la gestion des risques en génie civil, couvrant les distributions, les rappels statistiques et les techniques d'interprétation mathématique.
Revêtement universel: compréhension et preuve
Explore le concept de revêtement universel à travers des preuves et des exemples détaillés, en mettant l'accent sur l'unicité et la signification.
Afficher plus
Publications associées (77)