Trigonométrievignette|droite|Un triangle rectangle sur lequel est indiqué un angle Â, le côté adjacent à cet angle, le côté opposé à celui-ci, l'hypoténuse du triangle, et son angle droit. vignette|Cercle trigonométrique et angles remarquables vignette|droite|Planche sur la Trigonométrie, 1728 Cyclopaedia. La trigonométrie (du grec τρίγωνος / trígonos, « triangulaire », et μέτρον / métron, « mesure ») est une branche des mathématiques qui traite des relations entre distances et angles dans les triangles et des fonctions trigonométriques telles que sinus, cosinus, tangente.
Polynôme trigonométriqueEn mathématiques, un polynôme trigonométrique (ou polynôme trigonométrique complexe) P est une fonction, définie par une somme d'exponentielles : où les coefficients de P sont complexes ou réels. En particulier, on peut exprimer tout polynôme trigonométrique comme somme de sinus et de cosinus : Les deux familles de coefficients (ak) et (bk)k peuvent être déduites de (ck)k, et vice versa : P est une fonction réelle si et seulement si les (ak)k et (bk) sont réels. Les coefficients (ak) sont tous nuls si et seulement si le polynôme est impair.
Sub-band codingIn signal processing, sub-band coding (SBC) is any form of transform coding that breaks a signal into a number of different frequency bands, typically by using a fast Fourier transform, and encodes each one independently. This decomposition is often the first step in data compression for audio and video signals. SBC is the core technique used in many popular lossy audio compression algorithms including MP3. The simplest way to digitally encode audio signals is pulse-code modulation (PCM), which is used on audio CDs, DAT recordings, and so on.
MP3Le MPEG-1 Audio Layer ou MPEG-2 Audio Layer , plus connu sous son abréviation de MP3, est la spécification audio des standards MPEG-1 et MPEG-2. Il s'agit d'un format de compression audio avec perte permettant une réduction importante de la taille du flux de données audio, tout en conservant une qualité de restitution couramment jugée acceptable, donnant le choix du débit selon le compromis taille-qualité souhaité. C'est aussi l'un des formats de musique numérique les plus répandus. L'extension de nom de fichier est .
Produit de convolutionEn mathématiques, le produit de convolution est un opérateur bilinéaire et un produit commutatif, généralement noté « ∗ », qui, à deux fonctions f et g sur un même domaine infini, fait correspondre une autre fonction « f ∗ g » sur ce domaine, qui en tout point de celui-ci est égale à l'intégrale sur l'entièreté du domaine (ou la somme si celui-ci est discret) d'une des deux fonctions autour de ce point, pondérée par l'autre fonction autour de l'origine — les deux fonctions étant parcourues en sens contraire
Time–frequency analysisIn signal processing, time–frequency analysis comprises those techniques that study a signal in both the time and frequency domains simultaneously, using various time–frequency representations. Rather than viewing a 1-dimensional signal (a function, real or complex-valued, whose domain is the real line) and some transform (another function whose domain is the real line, obtained from the original via some transform), time–frequency analysis studies a two-dimensional signal – a function whose domain is the two-dimensional real plane, obtained from the signal via a time–frequency transform.
Ondelettethumb|Ondelette de Daubechies d'ordre 2. Une ondelette est une fonction à la base de la décomposition en ondelettes, décomposition similaire à la transformée de Fourier à court terme, utilisée dans le traitement du signal. Elle correspond à l'idée intuitive d'une fonction correspondant à une petite oscillation, d'où son nom. Cependant, elle comporte deux différences majeures avec la transformée de Fourier à court terme : elle peut mettre en œuvre une base différente, non forcément sinusoïdale ; il existe une relation entre la largeur de l'enveloppe et la fréquence des oscillations : on effectue ainsi une homothétie de l'ondelette, et non seulement de l'oscillation.
Réponse en fréquenceLa réponse en fréquence est la mesure de la réponse de tout système (mécanique, électrique, électronique, optique, etc.) à un signal de fréquence variable (mais d'amplitude constante) à son entrée. Dans la gamme des fréquences audibles, la réponse en fréquence intéresse habituellement les amplificateurs électroniques, les microphones et les haut-parleurs. La réponse du spectre radioélectrique peut faire référence aux mesures de câbles coaxiaux, aux câbles de catégorie 6 et aux dispositifs de mélangeur vidéo sans fil.
Time–frequency representationA time–frequency representation (TFR) is a view of a signal (taken to be a function of time) represented over both time and frequency. Time–frequency analysis means analysis into the time–frequency domain provided by a TFR. This is achieved by using a formulation often called "Time–Frequency Distribution", abbreviated as TFD. TFRs are often complex-valued fields over time and frequency, where the modulus of the field represents either amplitude or "energy density" (the concentration of the root mean square over time and frequency), and the argument of the field represents phase.
Domaine temporelLe domaine temporel se rapporte à l'analyse de fonctions mathématiques ou de signaux physiques modélisant une variation quelconque au cours du temps. En domaine temporel, la valeur de la fonction ou du signal est connue, soit en quelques points discrets de la durée d'analyse, ou éventuellement, pour tous les nombres réels. L'oscilloscope est parmi les outils usuels permettant de visualiser les signaux physiques du domaine temporel. Domaine fréquentiel Temps (physique) Catégorie:Analyse du signal Catégorie: