Résumé
Le domaine temporel se rapporte à l'analyse de fonctions mathématiques ou de signaux physiques modélisant une variation quelconque au cours du temps. En domaine temporel, la valeur de la fonction ou du signal est connue, soit en quelques points discrets de la durée d'analyse, ou éventuellement, pour tous les nombres réels. L'oscilloscope est parmi les outils usuels permettant de visualiser les signaux physiques du domaine temporel.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (7)
ME-421: System identification
Identification of discrete-time linear models using experimental data is studied. The correlation method and spectral analysis are used to identify nonparametric models and the subspace and prediction
ME-425: Model predictive control
Provide an introduction to the theory and practice of Model Predictive Control (MPC). Main benefits of MPC: flexible specification of time-domain objectives, performance optimization of highly complex
MICRO-310(a): Signals and systems I (for MT)
Présentation des concepts et des outils de base pour la caractérisation des signaux ainsi que pour l'analyse et la synthèse des systèmes linéaires (filtres ou canaux de transmission). Application de c
Afficher plus
Séances de cours associées (33)
Zieger-Nichols Deuxième méthode : Contrôle de l'altitude des ballons
Explore la deuxième méthode de Zieger-Nichols et le contrôle de l'altitude des ballons.
Transformation de Fourier en continu
Couvre la transformation continue de Fourier, ses propriétés et ses applications sur des systèmes LTI stables.
Modèles inductifs-capacitifs: Crosstalk et pertes
Explore les modèles inductifs-capacitifs pour l'analyse de la diaphonie et l'impact des pertes dans les lignes de transmission.
Afficher plus
Publications associées (143)
Concepts associés (5)
Signal électrique
vignette|Signaux électriques sur l'écran d'un oscilloscope : signal rectanglaire (haut), signal harmonique ou sinusoïdal (bas). Un signal électrique est une grandeur électrique dont la variation dans le temps transporte une information, d'une source à une destination. La grandeur électrique que l'on considère pour la transmission et le traitement du signal peut être directement la différence de potentiel ou l'intensité d'un courant électrique ; ou bien une modulation de l'amplitude, de la fréquence ou de la phase d'une variation périodique de ces grandeurs, qu'on appelle porteuse ; dans les communications numériques par modem des règles complexes régissent la modulation afin d'occuper au mieux la largeur de bande allouée.
Domaine fréquentiel
Le domaine fréquentiel se rapporte à l'analyse de fonctions mathématiques ou de signaux physiques manifestant une fréquence. Alors qu'un graphe dans le domaine temporel présentera les variations dans l'allure d'un signal au cours du temps, un graphe dans le domaine fréquentiel montrera quelle proportion du signal appartient à telle ou telle bande de fréquence, parmi plusieurs bancs. Une représentation dans le domaine fréquentiel peut également inclure des informations sur le décalage de phase qui doit être appliqué à chaque sinusoïde afin de reconstruire le signal en domaine temporel.
Transformation de Fourier
thumb|Portrait de Joseph Fourier. En mathématiques, plus précisément en analyse, la transformation de Fourier est une extension, pour les fonctions non périodiques, du développement en série de Fourier des fonctions périodiques. La transformation de Fourier associe à toute fonction intégrable définie sur R et à valeurs réelles ou complexes, une autre fonction sur R appelée transformée de Fourier dont la variable indépendante peut s'interpréter en physique comme la fréquence ou la pulsation.
Afficher plus