Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
This paper develops several lattice structures for RLS-Laguerre adaptive filtering including a posteriori and a priori based lattice filters with error-feedback, array-based lattice filters, and normalized lattice filters. All structures are efficient in that their computational cost is proportional to the number of taps, albeit some structures require more multiplications or divisions than others. The performance of all filters, however, can differ under practical considerations, such as finite-precision effects and regularization. Simulations are included to illustrate these facts.
Alireza Karimi, Seyed Sohail Madani
Maryam Kamgarpour, Luca Furieri, Na Li
Alireza Karimi, Seyed Sohail Madani