Méthode itérativeEn analyse numérique, une méthode itérative est un procédé algorithmique utilisé pour résoudre un problème, par exemple la recherche d’une solution d’un système d'équations ou d’un problème d’optimisation. En débutant par le choix d’un point initial considéré comme une première ébauche de solution, la méthode procède par itérations au cours desquelles elle détermine une succession de solutions approximatives raffinées qui se rapprochent graduellement de la solution cherchée. Les points générés sont appelés des itérés.
Transformation de Fourier rapideLa transformation de Fourier rapide (sigle anglais : FFT ou fast Fourier transform) est un algorithme de calcul de la transformation de Fourier discrète (TFD). Sa complexité varie en O(n log n) avec le nombre n de points, alors que la complexité de l’algorithme « naïf » s'exprime en O(n). Ainsi, pour n = , le temps de calcul de l'algorithme rapide peut être 100 fois plus court que le calcul utilisant la formule de définition de la TFD.
Matrix multiplication algorithmBecause matrix multiplication is such a central operation in many numerical algorithms, much work has been invested in making matrix multiplication algorithms efficient. Applications of matrix multiplication in computational problems are found in many fields including scientific computing and pattern recognition and in seemingly unrelated problems such as counting the paths through a graph. Many different algorithms have been designed for multiplying matrices on different types of hardware, including parallel and distributed systems, where the computational work is spread over multiple processors (perhaps over a network).
Algorithme de multiplication d'entiersLes algorithmes de multiplication permettent de calculer le résultat d'une multiplication. Graphiquement, il s'agit de transformer un rectangle multiplicateur × multiplicande en une ligne, en conservant le nombre d'éléments. Ce type de multiplication n'utilise que des additions et des multiplications ou des divisions par 2. Elle ne nécessite pas de connaître de table de multiplication (autre que la multiplication par 2).
GéostatistiqueLa géostatistique est l'étude des variables régionalisées, à la frontière entre les mathématiques et les sciences de la Terre. Son principal domaine d'utilisation a historiquement été l'estimation des gisements miniers, mais son domaine d'application actuel est beaucoup plus large et tout phénomène spatialisé peut être étudié en utilisant la géostatistique. L'histoire de la géostatistique est liée à l'estimation des gisements exploités dans les mines. Dans les années 1950, un professeur de l'université du Witwatersrand en Afrique du Sud, Danie G.
Complexité en tempsEn algorithmique, la complexité en temps est une mesure du temps utilisé par un algorithme, exprimé comme fonction de la taille de l'entrée. Le temps compte le nombre d'étapes de calcul avant d'arriver à un résultat. Habituellement, le temps correspondant à des entrées de taille n est le temps le plus long parmi les temps d’exécution des entrées de cette taille ; on parle de complexité dans le pire cas. Les études de complexité portent dans la majorité des cas sur le comportement asymptotique, lorsque la taille des entrées tend vers l'infini, et l'on utilise couramment les notations grand O de Landau.
Algorithme récursifUn algorithme récursif est un algorithme qui résout un problème en calculant des solutions d'instances plus petites du même problème. L'approche récursive est un des concepts de base en informatique. Les premiers langages de programmation qui ont autorisé l'emploi de la récursivité sont LISP et Algol 60. Depuis, tous les langages de programmation généraux réalisent une implémentation de la récursivité. Pour répéter des opérations, typiquement, un algorithme récursif s'appelle lui-même.
Higher-dimensional gamma matricesIn mathematical physics, higher-dimensional gamma matrices generalize to arbitrary dimension the four-dimensional Gamma matrices of Dirac, which are a mainstay of relativistic quantum mechanics. They are utilized in relativistically invariant wave equations for fermions (such as spinors) in arbitrary space-time dimensions, notably in string theory and supergravity. The Weyl–Brauer matrices provide an explicit construction of higher-dimensional gamma matrices for Weyl spinors.
Récursion mutuelleEt mathématiques et en informatique, la récursion mutuelle est une récursion où deux (ou plus) fonctions mathématiques ou programmatiques sont définies l'une en termes de l'autre. En informatique, cependant, on utilise plus souvent le terme "récursivité croisée". Par exemple, deux fonctions A(x) and B(x) définies comme suit : La récursion mutuelle est très commune dans le style de programmation fonctionnelle et est souvent utilisée pour la programmation en LISP, Scheme, ML et celle de langages similaires.
Récursion terminaleEn informatique, la récursion terminale, aussi appelée, récursion finale, est un cas particulier de récursivité assimilée à une itération. Une fonction à récursivité terminale est une fonction où l'appel récursif est la dernière instruction à être évaluée. Cette instruction est alors nécessairement « pure », c'est-à-dire qu'elle consiste en un simple appel à la fonction, et jamais à un calcul ou une composition. Par exemple, dans un langage de programmation fictif : fonction récursionTerminale(n) : // ...