Optimisation (mathématiques)L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.
Programmation dynamiqueEn informatique, la programmation dynamique est une méthode algorithmique pour résoudre des problèmes d'optimisation. Le concept a été introduit au début des années 1950 par Richard Bellman. À l'époque, le terme « programmation » signifie planification et ordonnancement. La programmation dynamique consiste à résoudre un problème en le décomposant en sous-problèmes, puis à résoudre les sous-problèmes, des plus petits aux plus grands en stockant les résultats intermédiaires.
Processus de décision markovienEn théorie de la décision et de la théorie des probabilités, un processus de décision markovien (en anglais Markov decision process, MDP) est un modèle stochastique où un agent prend des décisions et où les résultats de ses actions sont aléatoires. Les MDPs sont utilisés pour étudier des problèmes d'optimisation à l'aide d'algorithmes de programmation dynamique ou d'apprentissage par renforcement. Les MDPs sont connus depuis les années 1950. Une grande contribution provient du travail de Ronald A.
Bruit au travailLe bruit est une sensation auditive désagréable ou gênante. Au-delà d’un certain seuil, quand le niveau sonore est très élevé, tous les sons sont dangereux pour la santé. Au travail, le bruit peut avoir de multiples origines : machines, outils, véhicules... Le niveau du bruit se mesure en décibels . Selon l’Institut National de Recherche et de Sécurité, pour une journée de travail de 8 heures, l’ouïe est en danger à partir de 80 dB(A).
Réglementation sur les nuisances sonoresLa réglémentation sur les nuisances sonores comprend des lois ou directives liées à l'émission de bruit, établies par des niveaux de gouvernements nationaux, d'états ou provinciaux et municipaux. Après le grand tournant de l'acte américain de contrôle des nuisances sonores, d'autres gouvernements locaux et d'état établissent d'autres règles. Une réglementation des nuisances sonores restreint la quantité de bruit, la durée du bruit et la source du bruit. Les restrictions sont généralement valables à certaines heures de la journée.
Lifelong learningLifelong learning is the "ongoing, voluntary, and self-motivated" pursuit of knowledge for either personal or professional reasons. It is important for an individual's competitiveness and employability, but also enhances social inclusion, active citizenship, and personal development. In some contexts, the term "lifelong learning" evolved from the term "life-long learners", created by Leslie Watkins and used by Clint Taylor, professor at CSULA and Superintendent for the Temple City Unified School District, in the district's mission statement in 1993, the term recognizes that learning is not confined to childhood or the classroom but takes place throughout life and in a range of situations.
Rapport signal sur bruitEn électronique, le rapport signal sur bruit (SNR, ) est le rapport des puissances entre la partie du signal qui représente une information et le reste, qui constitue un bruit de fond. Il est un indicateur de la qualité de la transmission d'une information. L'expression d'un rapport signal sur bruit se fonde implicitement sur le principe de superposition, qui pose que le signal total est la somme de ces composantes. Cette condition n'est vraie que si le phénomène concerné est linéaire.
Point estimationIn statistics, point estimation involves the use of sample data to calculate a single value (known as a point estimate since it identifies a point in some parameter space) which is to serve as a "best guess" or "best estimate" of an unknown population parameter (for example, the population mean). More formally, it is the application of a point estimator to the data to obtain a point estimate. Point estimation can be contrasted with interval estimation: such interval estimates are typically either confidence intervals, in the case of frequentist inference, or credible intervals, in the case of Bayesian inference.
Minimum mean square errorIn statistics and signal processing, a minimum mean square error (MMSE) estimator is an estimation method which minimizes the mean square error (MSE), which is a common measure of estimator quality, of the fitted values of a dependent variable. In the Bayesian setting, the term MMSE more specifically refers to estimation with quadratic loss function. In such case, the MMSE estimator is given by the posterior mean of the parameter to be estimated.
Optimizing compilerIn computing, an optimizing compiler is a compiler that tries to minimize or maximize some attributes of an executable computer program. Common requirements are to minimize a program's execution time, memory footprint, storage size, and power consumption (the last three being popular for portable computers). Compiler optimization is generally implemented using a sequence of optimizing transformations, algorithms which take a program and transform it to produce a semantically equivalent output program that uses fewer resources or executes faster.