Regroupement hiérarchiqueDans le domaine de l'analyse et de la classification automatique de données, le regroupement hiérarchique est un partitionnement de données ou clustering, au moyen de diverses méthodes, dites « ascendantes » et « descendantes ». Les méthodes dites « descendantes » partent d’une solution générale vers une autre plus spécifique. Les méthodes de cette catégorie démarrent avec une seule classe contenant la totalité puis se divisent à chaque étape selon un critère jusqu’à l’obtention d’un ensemble de classes différentes.
MultitâcheUn système d'exploitation est multitâche () s’il permet d’exécuter, de façon apparemment simultanée, plusieurs programmes informatiques. On parle également de multiprogrammation. Cette fonction est indépendante du nombre de processeurs dotant l’ordinateur ; une machine multiprocesseur n'est aucunement nécessaire pour exécuter un système d'exploitation multitâche. La simultanéité apparente ou réelle, selon le nombre de processeurs, est le résultat de l’alternance rapide d’exécution des processus présents en mémoire.
K-moyennesLe partitionnement en k-moyennes (ou k-means en anglais) est une méthode de partitionnement de données et un problème d'optimisation combinatoire. Étant donnés des points et un entier k, le problème est de diviser les points en k groupes, souvent appelés clusters, de façon à minimiser une certaine fonction. On considère la distance d'un point à la moyenne des points de son cluster ; la fonction à minimiser est la somme des carrés de ces distances.
Partitionnement de donnéesvignette|upright=1.2|Exemple de clustering hiérarchique. Le partitionnement de données (ou data clustering en anglais) est une méthode en analyse des données. Elle vise à diviser un ensemble de données en différents « paquets » homogènes, en ce sens que les données de chaque sous-ensemble partagent des caractéristiques communes, qui correspondent le plus souvent à des critères de proximité (similarité informatique) que l'on définit en introduisant des mesures et classes de distance entre objets.
Agent intelligentEn intelligence artificielle, un agent intelligent (AI) est une entité autonome capable de percevoir son environnement grâce à des capteurs et aussi d'agir sur celui-ci via des effecteurs afin de réaliser des objectifs. Un agent intelligent peut également apprendre ou utiliser des connaissances pour pouvoir réaliser ses objectifs. Ils peuvent être simples ou complexes. Par exemple, un simple système réactif, comme le thermostat est considéré comme étant un agent intelligent.
Determining the number of clusters in a data setDetermining the number of clusters in a data set, a quantity often labelled k as in the k-means algorithm, is a frequent problem in data clustering, and is a distinct issue from the process of actually solving the clustering problem. For a certain class of clustering algorithms (in particular k-means, k-medoids and expectation–maximization algorithm), there is a parameter commonly referred to as k that specifies the number of clusters to detect.
Agent logicielEn informatique, un agent ou agent logiciel (du latin agere : agir) est un logiciel qui agit de façon autonome. C'est un programme qui accomplit des tâches à la manière d'un automate et en fonction de ce que lui a demandé son auteur. Dans le contexte d'Internet, les agents intelligents sont liés au Web sémantique, dans lequel ils sont utilisés pour faire à la place des humains les recherches et les corrélations entre les résultats de ces recherches. Ceci se fait en fonction de règles prédéfinies.
Grappe de serveursOn parle de grappe de serveurs, de cluster, de groupement de serveurs ou de ferme de calcul (computer cluster en anglais) pour désigner des techniques consistant à regrouper plusieurs ordinateurs indépendants appelés nœuds (node en anglais), afin de permettre une gestion globale et de dépasser les limitations d'un ordinateur pour : augmenter la disponibilité ; faciliter la montée en charge ; permettre une répartition de la charge ; faciliter la gestion des ressources (processeur, mémoire vive, disques durs,
High-availability clusterHigh-availability clusters (also known as HA clusters, fail-over clusters) are groups of computers that support server applications that can be reliably utilized with a minimum amount of down-time. They operate by using high availability software to harness redundant computers in groups or clusters that provide continued service when system components fail. Without clustering, if a server running a particular application crashes, the application will be unavailable until the crashed server is fixed.
Correlation clusteringClustering is the problem of partitioning data points into groups based on their similarity. Correlation clustering provides a method for clustering a set of objects into the optimum number of clusters without specifying that number in advance. Cluster analysis In machine learning, correlation clustering or cluster editing operates in a scenario where the relationships between the objects are known instead of the actual representations of the objects.