Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We propose a physiologically based intonation model using perceptual relevance. Motivated by speech synthesis from a speech-to-speech translation (S2ST) point of view, we aim at a language independent way of modelling intonation. The model presented in this paper can be seen as a generalisation of the command response (CR) model, albeit with the same modelling power. It is an additive model which decomposes intonation contours into a sum of critically damped system impulse responses. To decompose the intonation contour, we use a weighted correlation based atom decomposition algorithm (WCAD) built around a matching pursuit framework. The algorithm allows for an arbitrary precision to be reached using an iterative procedure that adds more elementary atoms to the model. Experiments are presented demonstrating that this generalised CR (GCR) model is able to model intonation as would be expected. Experiments also show that the model produces a similar number of parameters or elements as the CR model. We conclude that the GCR model is appropriate as an engineering solution for modelling prosody, and hope that it is a contribution to a deeper scientific understanding of the neurobiological process of intonation.
Mahmut Selman Sakar, Murat Kaynak, Amit Yedidia Dolev
Mathew Magimai Doss, Zohreh Mostaani