Table de hachage distribuéeUne table de hachage distribuée (ou DHT pour Distributed Hash Table), est une technique permettant la mise en place d’une table de hachage dans un système réparti. Une table de hachage est une structure de données de type clé → valeur. Chaque donnée est associée à une clé et est distribuée sur le réseau. Les tables de hachage permettent de répartir le stockage de données sur l’ensemble des nœuds du réseau, chaque nœud étant responsable d’une partie des données.
Calcul distribuéUn calcul distribué, ou réparti ou encore partagé, est un calcul ou un traitement réparti sur plusieurs microprocesseurs et plus généralement sur plusieurs unités centrales informatiques, et on parle alors d'architecture distribuée ou de système distribué. Le calcul distribué est souvent réalisé sur des clusters de calcul spécialisés, mais peut aussi être réalisé sur des stations informatiques individuelles à plusieurs cœurs. La distribution d'un calcul est un domaine de recherche des sciences mathématiques et informatiques.
Système de fichiers distribuéEn informatique, un système de fichiers distribués ou système de fichiers en réseau est un système de fichiers qui permet le partage de fichiers à plusieurs clients au travers du réseau informatique. Contrairement à un système de fichiers local, le client n'a pas accès au système de stockage sous-jacent, et interagit avec le système de fichiers via un protocole adéquat. CephFS Coda GlusterFS GPFS Hadoop Distributed File System (HDFS) Lustre OrangeFS SheepDog Unity, du logiciel Perfect Dark Catégorie:Systèm
General topologyIn mathematics, general topology (or point set topology) is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology. The fundamental concepts in point-set topology are continuity, compactness, and connectedness: Continuous functions, intuitively, take nearby points to nearby points.
Topologie faibleEn mathématiques, la topologie faible d'un espace vectoriel topologique E est une topologie définie sur E au moyen de son dual topologique E'. On définit également sur E' une topologie dite faible-* au moyen de E. Dans tout cet article, sauf mention contraire, on notera pour et forme linéaire sur . Soient E un espace vectoriel normé (réel ou complexe), ou plus généralement un espace vectoriel topologique et E' son dual topologique, c’est-à-dire l'ensemble des formes linéaires continues sur E.
Comparaison de topologiesEn mathématiques, l'ensemble de toutes les topologies possibles sur un ensemble donné possède une structure d'ensemble partiellement ordonné. Cette relation d'ordre permet de comparer les différentes topologies. Soient τ1 et τ2 deux topologies sur un ensemble X. On dit que τ2 est plus fine que τ1 (ou bien que τ1 est moins fine que τ2) et on note τ ⊆ τ si l'application identité idX : (X, τ2) → (X, τ1) est continue. Si de plus τ ≠ τ, on dit que τ2 est strictement plus fine que τ1 (ou bien que τ1 est strictement moins fine que τ2).
Algorithmique répartieUn algorithme réparti (ou distribué) est une suite d'instructions et il est généralement un algorithme parallèle (mais pas toujours, exemple, une communication téléphonique) réparti sur plusieurs sites. Chaque site calcule (i.e. produit de nouveaux résultats) et communique (i.e. échange des données avec d'autres sites). Un algorithme réparti décrit le fonctionnement d'un système informatique composé de plusieurs unités de calcul reliées par un réseau de communication, tels que les routeurs dans Internet.
Topologievignette|Déformation continue d'une tasse avec une anse, en un tore (bouée). thumb|Un ruban de Möbius est une surface fermée dont le bord se réduit à un cercle. De tels objets sont des sujets étudiés par la topologie. La topologie est la branche des mathématiques qui étudie les propriétés d'objets géométriques préservées par déformation continue sans arrachage ni recollement, comme un élastique que l’on peut tendre sans le rompre.
Polar topologyIn functional analysis and related areas of mathematics a polar topology, topology of -convergence or topology of uniform convergence on the sets of is a method to define locally convex topologies on the vector spaces of a pairing.
Topologies on spaces of linear mapsIn mathematics, particularly functional analysis, spaces of linear maps between two vector spaces can be endowed with a variety of topologies. Studying space of linear maps and these topologies can give insight into the spaces themselves. The article operator topologies discusses topologies on spaces of linear maps between normed spaces, whereas this article discusses topologies on such spaces in the more general setting of topological vector spaces (TVSs).