Sparse dictionary learningSparse dictionary learning (also known as sparse coding or SDL) is a representation learning method which aims at finding a sparse representation of the input data in the form of a linear combination of basic elements as well as those basic elements themselves. These elements are called atoms and they compose a dictionary. Atoms in the dictionary are not required to be orthogonal, and they may be an over-complete spanning set. This problem setup also allows the dimensionality of the signals being represented to be higher than the one of the signals being observed.
Time–frequency representationA time–frequency representation (TFR) is a view of a signal (taken to be a function of time) represented over both time and frequency. Time–frequency analysis means analysis into the time–frequency domain provided by a TFR. This is achieved by using a formulation often called "Time–Frequency Distribution", abbreviated as TFD. TFRs are often complex-valued fields over time and frequency, where the modulus of the field represents either amplitude or "energy density" (the concentration of the root mean square over time and frequency), and the argument of the field represents phase.
Discrete wavelet transformIn numerical analysis and functional analysis, a discrete wavelet transform (DWT) is any wavelet transform for which the wavelets are discretely sampled. As with other wavelet transforms, a key advantage it has over Fourier transforms is temporal resolution: it captures both frequency and location information (location in time). Haar wavelet The first DWT was invented by Hungarian mathematician Alfréd Haar. For an input represented by a list of numbers, the Haar wavelet transform may be considered to pair up input values, storing the difference and passing the sum.
Réponse en fréquenceLa réponse en fréquence est la mesure de la réponse de tout système (mécanique, électrique, électronique, optique, etc.) à un signal de fréquence variable (mais d'amplitude constante) à son entrée. Dans la gamme des fréquences audibles, la réponse en fréquence intéresse habituellement les amplificateurs électroniques, les microphones et les haut-parleurs. La réponse du spectre radioélectrique peut faire référence aux mesures de câbles coaxiaux, aux câbles de catégorie 6 et aux dispositifs de mélangeur vidéo sans fil.
Processus unifiéLe processus unifié (PU), ou « unified process (UP) » en anglais, ou « Unified Software Development Process (USDP) » est une famille de méthodes de développement de logiciels orientés objets. Elle se caractérise par une démarche itérative et incrémentale, pilotée par les cas d'utilisation, et centrée sur l'architecture et les modèles UML. Elle définit un processus intégrant toutes les activités de conception et de réalisation au sein de cycles de développement composés d'une phase de création, d'une phase d'élaboration, d'une phase de construction et d'une phase de transition, comprenant chacune plusieurs itérations.
Intégrale de cheminUne 'intégrale de chemin' (« path integral » en anglais) est une intégrale fonctionnelle, c'est-à-dire que l'intégrant est une fonctionnelle et que la somme est prise sur des fonctions, et non sur des nombres réels (ou complexes) comme pour les intégrales ordinaires. On a donc ici affaire à une intégrale en dimension infinie. Ainsi, on distinguera soigneusement l'intégrale de chemin (intégrale fonctionnelle) d'une intégrale ordinaire calculée sur un chemin de l'espace physique, que les mathématiciens appellent intégrale curviligne.
Concurrence pure et parfaiteLa concurrence pure et parfaite (CPP) ou, tout simplement, la concurrence parfaite, correspond à la théorie de la formation du prix élaborée au par les économistes néo-classiques. La concurrence pure et parfaite est censée permettre l’équilibre sur tous les marchés sous des conditions suffisantes très particulières. La concurrence pure et parfaite représente un des deux cas extrêmes de structures de marché étudiés par les économistes néoclassiques, le second étant le cas de monopole.
Domaine temporelLe domaine temporel se rapporte à l'analyse de fonctions mathématiques ou de signaux physiques modélisant une variation quelconque au cours du temps. En domaine temporel, la valeur de la fonction ou du signal est connue, soit en quelques points discrets de la durée d'analyse, ou éventuellement, pour tous les nombres réels. L'oscilloscope est parmi les outils usuels permettant de visualiser les signaux physiques du domaine temporel. Domaine fréquentiel Temps (physique) Catégorie:Analyse du signal Catégorie:
Postulats de la mécanique quantiquevignette|Participants au Congrès Solvay de 1927 sur la mécanique quantique Cet article traite des postulats de la mécanique quantique. La description du monde microscopique que fournit la mécanique quantique s'appuie sur une vision radicalement nouvelle, et s'oppose en cela à la mécanique classique. Elle repose sur des postulats. S'il existe un très large consensus entre les physiciens sur la manière de réaliser les calculs qui permettent de rendre compte des phénomènes quantiques et de prévoir leur évolution, il n'existe pas en revanche de consensus sur une manière unique de les expliquer aux étudiants.
Filter bankIn signal processing, a filter bank (or filterbank) is an array of bandpass filters that separates the input signal into multiple components, each one carrying a single frequency sub-band of the original signal. One application of a filter bank is a graphic equalizer, which can attenuate the components differently and recombine them into a modified version of the original signal.