We present results from an extensive experimental investigation into granular segregation of a shallow binary mixture in which particles are driven by frictional interactions with the surface of a vibrating horizontal tray. Three distinct phases of the mixture are established viz. binary gas (unsegregated), segregation liquid, and segregation crystal. Their ranges of existence are mapped out as a function of the system’s primary control parameters using a number of measures based on Voronoi tessellation. We study the associated transitions and show that segregation can be suppressed as the total filling fraction of the granular layer, C, is decreased below a critical value, Cc, or if the dimensionless acceleration of the driving, γ, is increased above a value γc.
Frédéric Mila, Natalia Chepiga
Ignacio Pagonabarraga Mora, Elena Sesé Sansa