Analyse quantitative (économie)En finance, l'analyse quantitative est l'utilisation de mathématiques financières, souvent dérivées des probabilités, pour mettre au point et utiliser des modèles permettant aux gestionnaires de fonds et autres spécialistes financiers de s'attaquer à deux problèmes : mieux évaluer la valeur des actifs financiers, et surtout leurs dérivés. Ces dérivés peuvent être des produits comme les warrants, les certificats ou tout autre type de dérivé ou d'option (contrats Futures sur matières premières, indices, etc.
Perspective (représentation)vignette|Effet de perspective dans Ulysse remet Chryséis à son père du Lorrain, vers 1644. La perspective est l'ensemble des techniques picturales destinées à représenter les trois dimensions d'un objet ou d'une scène par une sur une surface plane. Les techniques de perspective utilisent certains des indices qui fondent la perception de la profondeur. L'enseignement la décompose en perspective linéaire, technique du dessin et de la géométrie des contours, et en perspective aérienne, technique picturale qui s'intéresse au rendu des objets lointains.
ConiqueEn géométrie euclidienne, une conique est une courbe plane algébrique, définie initialement comme l’intersection d'un cône de révolution (supposé prolongé à l’infini de part et d’autre du sommet) avec un plan. Lorsque le plan de coupe ne passe pas par le sommet du cône, la conique est dite non dégénérée et réalise l’une des trois formes de courbe suivantes : ellipse, parabole ou hyperbole (le cercle étant un cas particulier de l'ellipse, parfois appelé quatrième forme). Ces courbes sont caractérisées par un paramètre réel appelé excentricité.
Universality (dynamical systems)In statistical mechanics, universality is the observation that there are properties for a large class of systems that are independent of the dynamical details of the system. Systems display universality in a scaling limit, when a large number of interacting parts come together. The modern meaning of the term was introduced by Leo Kadanoff in the 1960s, but a simpler version of the concept was already implicit in the van der Waals equation and in the earlier Landau theory of phase transitions, which did not incorporate scaling correctly.
Science de la natureLes sciences de la nature, ou sciences naturelles, ont pour objet le monde naturel. Il s'agit de termes surtout utilisés dans le domaine de l'enseignement scolaire. Les termes « sciences de la nature », « sciences naturelles » et « histoire naturelle » sont en réalité équivalents. La nuance sémantique qui les différencie consiste en ce que « sciences de la nature » et « sciences naturelles » sont des termes qui mettent l'accent sur un ensemble de sciences, chacune spécialisée, alors que le terme « histoire naturelle », le plus ancien des trois, est toujours exprimé au singulier en signifiant ainsi davantage l'unicité des sciences qui étudient la nature plutôt que leur diversité en tant que telle.
Apprentissage par renforcement profondL'apprentissage par renforcement profond (en anglais : deep reinforcement learning ou deep RL) est un sous-domaine de l'apprentissage automatique (en anglais : machine learning) qui combine l'apprentissage par renforcement et l'apprentissage profond (en anglais : deep learning). L'apprentissage par renforcement considère le problème d'un agent informatique (par exemple, un robot, un agent conversationnel, un personnage dans un jeu vidéo, etc.) qui apprend à prendre des décisions par essais et erreurs.
AnalysisAnalysis (: analyses) is the process of breaking a complex topic or substance into smaller parts in order to gain a better understanding of it. The technique has been applied in the study of mathematics and logic since before Aristotle (384–322 B.C.), though analysis as a formal concept is a relatively recent development. The word comes from the Ancient Greek ἀνάλυσις (analysis, "a breaking-up" or "an untying;" from ana- "up, throughout" and lysis "a loosening"). From it also comes the word's plural, analyses.
Modèle mathématiquevignette|Un automate fini est un exemple de modèle mathématique. Un modèle mathématique est une traduction d'une observation dans le but de lui appliquer les outils, les techniques et les théories mathématiques, puis généralement, en sens inverse, la traduction des résultats mathématiques obtenus en prédictions ou opérations dans le monde réel. Un modèle se rapporte toujours à ce qu’on espère en déduire.
GéométrieLa géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
Analyse (mathématiques)L'analyse (du grec , délier, examiner en détail, résoudre) a pour point de départ la formulation rigoureuse du calcul infinitésimal. C'est la branche des mathématiques qui traite explicitement de la notion de limite, que ce soit la limite d'une suite ou la limite d'une fonction. Elle inclut également des notions comme la continuité, la dérivation et l'intégration. Ces notions sont étudiées dans le contexte des nombres réels ou des nombres complexes.