FDTDFDTD est l'acronyme de l'expression anglaise Finite Difference Time Domain. C'est une méthode de calcul de différences finies dans le domaine temporel, qui permet de résoudre des équations différentielles dépendantes du temps. Cette méthode est couramment utilisée en électromagnétisme pour résoudre les équations de Maxwell. Cette méthode a été proposée par Kane S. Yee en 1966. Différences finies Méthode des différences finies Kane Yee, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Transactions on Antennas and Propagation, 14, 1966, S.
Miroir sphériqueUn miroir sphérique est un miroir dont la forme est une calotte sphérique, c'est-à-dire une sphère tronquée par un plan. L'ouverture du miroir est donc un disque, et son axe optique est la droite normale à l'ouverture et passant par son centre. Il existe des miroirs sphériques convexes et concaves. Le miroir sphérique est astigmatique, c'est-à-dire que des rayons issus d'un même point source ne convergent pas. Il n'est stigmatique que pour son centre qui est sa propre image.
Cône (géométrie)vignette|Illustration à l'article Problemata mathematica... publiée sur les Acta Eruditorum, 1734 En géométrie, un cône est une surface réglée ou bien un solide. Un cône est une surface réglée définie par une droite (d), appelée génératrice, passant par un point fixe S appelé sommet et un point variable décrivant une courbe (c), appelée courbe directrice. On parle aussi dans ce cas de surface conique. Cône de révolution Parmi ces surfaces coniques, la plus étudiée est le cône de révolution dans lequel la courbe directrice est un cercle de centre O situé dans un plan perpendiculaire à (SO).
Ellipsoïde de révolutionEn mathématiques, un ellipsoïde de révolution, ou sphéroïde, est une surface de révolution obtenue par rotation dans l'espace d'une ellipse autour de l'un de ses axes de symétrie. Comme tout ellipsoïde, il s'agit d'une surface quadrique, c'est-à-dire qu'elle est décrite par une équation de degré 2 en chaque coordonnée dans un repère cartésien. L'expression peut aussi parfois désigner le volume borné délimité par cette surface, notamment pour décrire des objets physiques tels que la Terre ou des noyaux atomiques.
OvaleDans le sens étymologique, un ovale est une forme d'œuf. En mathématiques, il n'y a pas de définition communément admise. La définition dépend de l'ouvrage consulté. La forme oblongue d'un stade de course à pied (un rectangle avec deux demi-cercles) et l'ellipse sont des ovales. L'adjectif est « ovale ». Dans le terme « ballon ovale » qui désigne le ballon de certains sports comme le rugby ou le football américain, ovale est à prendre dans son sens populaire et non mathématique puisque le ballon est un volume et non une figure plane (la section étant néanmoins une ellipse et donc un ovale).