vignette|Illustration à l'article Problemata mathematica... publiée sur les Acta Eruditorum, 1734
En géométrie, un cône est une surface réglée ou bien un solide.
Un cône est une surface réglée définie par une droite (d), appelée génératrice, passant par un point fixe S appelé sommet et un point variable décrivant une courbe (c), appelée courbe directrice.
On parle aussi dans ce cas de surface conique.
Cône de révolution
Parmi ces surfaces coniques, la plus étudiée est le cône de révolution dans lequel la courbe directrice est un cercle de centre O situé dans un plan perpendiculaire à (SO). Ce cône est appelé de révolution car il peut être généré simplement par la rotation d'une droite (d) passant par S autour d'un axe (Sz) différent de (d). La génératrice du cône fait alors un angle fixe avec l'axe de rotation.
C'est à partir de ce cône de révolution que les mathématiciens (dont Apollonius de Perga) ont classifié un ensemble de courbes comme des coniques (intersection du cône et d'un plan) : cercles, ellipses, paraboles, hyperboles.
Dans le repère orthonormal (S, i, j, k), l'équation du cône de révolution d'axe (Sz) et de sommet S est donnée par :
où est l'angle du cône (ou demi-angle au sommet), formé par l'axe de révolution et une génératrice.
Dans les cas où le plan est parallèle ou perpendiculaire à l'axe de révolution du cône on obtient les courbes suivantes :
La section d'un cône de révolution par un plan perpendiculaire à l'axe de révolution est un cercle.
La section d'un cône de révolution par un plan parallèle à l'axe de révolution est
l'union de deux droites sécantes si le plan contient l'axe de révolution
une hyperbole dans le cas contraire
Plus généralement, la section d'un cône de révolution par un plan donne une conique.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
La géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
In geometry, a (general) conical surface is the unbounded surface formed by the union of all the straight lines that pass through a fixed point — the apex or vertex — and any point of some fixed space curve — the directrix — that does not contain the apex. Each of those lines is called a generatrix of the surface. Every conic surface is ruled and developable. In general, a conical surface consists of two congruent unbounded halves joined by the apex.
vignette|Un cylindre quelconque. vignette|Divers cylindres droits (le premier est un cylindre circulaire droit). Un cylindre est une surface réglée dont les génératrices sont parallèles, c'est-à-dire une surface dans l'espace constituée de droites parallèles. On parle aussi de surface cylindrique. C'est un exemple de surface développable. On peut considérer un cylindre comme un cône dont le sommet est « rejeté à l'infini ». Par extension, on appelle encore cylindre le solide délimité par une surface cylindrique et par deux plans strictement parallèles.
Explore l'analyse et la construction des surfaces gothiques, en mettant l'accent sur les détails géométriques complexes et les techniques utilisées dans la conception architecturale.
We characterize the photochemically relevant conical intersections between the lowest-lying accessible electronic excited states of the different DNA/RNA nucleobases using Cholesky decomposition-based complete active space self-consistent field (CASSCF) al ...
Washington2023
We generalize the fixed-point property for discrete groups acting on convex cones given by Monod in [23] to topological groups. At first, we focus on describing this fixed-point property from a functional point of view, and then we look at the class of gro ...
The present work deals with monochromatic wavefront aberrations in optical systems without symmetries. The treatment begins with a class of systems characterized by misaligned spherical surfaces whose behavior is analyzed using the wavefront aberration exp ...