Publication

Structure of Lipid Nanoparticles Containing siRNA or mRNA by Dynamic Nuclear Polarization-Enhanced NMR Spectroscopy

Concepts associés (32)
Effet Overhauser nucléaire
En spectroscopie RMN, l'effet Overhauser nucléaire décrit une interaction entre deux spins à travers l'espace et non pas à travers les liaisons chimiques comme le couplage scalaire. Cette interaction est limitée à environ 5-6 Å. En anglais, cet effet s'appelle "Nuclear Overhauser Effect", soit NOE. Cet acronyme est souvent utilisé en français sous l'expression "effet NOE". Une des conséquences de la résonance magnétique nucléaire est l'interaction dipôle-dipôle à travers l'espace.
Résonance magnétique nucléaire
vignette|175px|Spectromètre de résonance magnétique nucléaire. L'aimant de 21,2 T permet à l'hydrogène (H) de résonner à . La résonance magnétique nucléaire (RMN) est une propriété de certains noyaux atomiques possédant un spin nucléaire (par exemple H, C, O, F, P, Xe...), placés dans un champ magnétique. Lorsqu'ils sont soumis à un rayonnement électromagnétique (radiofréquence), le plus souvent appliqué sous forme d'impulsions, les noyaux atomiques peuvent absorber l'énergie du rayonnement puis la relâcher lors de la relaxation.
Solid lipid nanoparticle
Lipid nanoparticles (LNPs) are nanoparticles composed of lipids. They are a novel pharmaceutical drug delivery system (and part of nanoparticle drug delivery), and a novel pharmaceutical formulation. LNPs as a drug delivery vehicle were first approved in 2018 for the siRNA drug Onpattro. LNPs became more widely known in late 2020, as some COVID-19 vaccines that use RNA vaccine technology coat the fragile mRNA strands with PEGylated lipid nanoparticles as their delivery vehicle (including both the Moderna and the Pfizer–BioNTech COVID-19 vaccines).
Nuclear magnetic resonance spectroscopy of proteins
Nuclear magnetic resonance spectroscopy of proteins (usually abbreviated protein NMR) is a field of structural biology in which NMR spectroscopy is used to obtain information about the structure and dynamics of proteins, and also nucleic acids, and their complexes. The field was pioneered by Richard R. Ernst and Kurt Wüthrich at the ETH, and by Ad Bax, Marius Clore, Angela Gronenborn at the NIH, and Gerhard Wagner at Harvard University, among others.
Biologie structurale
vignette|droite|Structure 3D de la myoglobine du grand cachalot (PDB ID 1MBO), la première protéine dont la structure a été résolue par cristallographie aux rayons X par John Kendrew et al. en 1958. La biologie structurale est la branche de la biologie qui étudie la structure et l'organisation spatiale des macromolécules biologiques, principalement les protéines et les acides nucléiques.
Spectroscopie
La spectroscopie, ou spectrométrie, est l'étude expérimentale du spectre d'un phénomène physique, c'est-à-dire de sa décomposition sur une échelle d'énergie, ou toute autre grandeur se ramenant à une énergie (fréquence, longueur d'onde). Historiquement, ce terme s'appliquait à la décomposition, par exemple par un prisme, de la lumière visible émise (spectrométrie d'émission) ou absorbée (spectrométrie d'absorption) par l'objet à étudier.
Résonance paramagnétique électronique
vignette|redresse=1.25|Spectromètre à résonance paramagnétique électronique La résonance paramagnétique électronique (RPE), résonance de spin électronique (RSE), ou en anglais electron spin resonance (ESR) désigne la propriété de certains électrons à absorber, puis réémettre l'énergie d'un rayonnement électromagnétique lorsqu'ils sont placés dans un champ magnétique. Seuls les électrons non appariés (ou électrons célibataires), présents dans des espèces chimiques radicalaires ainsi que dans les sels et complexes des métaux de transition, présentent cette propriété.
Spectroscopie rotationnelle
La spectroscopie rotationnelle, de rotation ou micro-onde étudie l'absorption et l'émission d'une onde électromagnétique (habituellement dans la région micro-onde du spectre électromagnétique) par des molécules associées aux modifications correspondantes du nombre quantique de rotation de la molécule. L'utilisation de micro-ondes en spectroscopie a été rendue possible en raison principalement du développement de la technologie associée pour le radar durant la Seconde Guerre mondiale.
Microfluidique
La microfluidique est la science et la technique des systèmes manipulant des fluides et dont au moins l'une des dimensions caractéristiques est de l'ordre du micromètre. George Whitesides définit la microfluidique comme « la science et la technologie des systèmes qui manipulent de petits volumes de fluides ( à ), en utilisant des canaux de la dimension de quelques dizaines de micromètres ». Selon Patrick Tabeling, Tabeling précise qu'il entend essentiellement par « nouvelles techniques » la microfabrication héritée de la micro-électronique.
Cellule artificielle
Les cellules artificielles sont des cellules construites à partir d'éléments artificiels. C'est une technologie émergente. Jusqu'à récemment, toutes les tentatives pour créer la vie artificielle n'avaient abouti qu'à des « pseudo-cellules » capables d'assurer la plupart des fonctions d'une cellule vivante, comme la transcription et traduction de protéines et la production d'ATP, mais qui n'étaient pas encore des cellules totalement opérationnelles.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.