Temps newtonienEn physique, le temps newtonien définit un temps absolu qui est le même en tout point de l'Univers et indifférent au mouvement. Il a été introduit par Isaac Newton en 1687 dans ses Principia Mathematica. En 1905, Albert Einstein démontre que le temps physique n'est pas newtonien. L'idée essentielle est que le temps newtonien n'est plus un paramètre unicursal. Cela signifie que changer d'échelle de grandeur temps par une fonction t' = f(t) ne demande pour la vitesse qu'un changement V' = V/f'(t), ce qui est simplement l'expression naturelle d'un changement d'unités.
Force d'inertieUne force d'inertie, ou inertielle, ou force fictive, ou pseudo-force est une force apparente qui agit sur les masses lorsqu'elles sont observées à partir d'un référentiel non inertiel, autrement dit depuis un point de vue en mouvement accéléré (en translation ou en rotation). La force d'inertie est donc une résistance opposée au mouvement par un corps, grâce à sa masse. L'équation fondamentale de la dynamique, dans la formulation initiale donnée par Newton, est valable uniquement dans des référentiels inertiels (dits aussi galiléens).
Méthode des volumes finisEn analyse numérique, la méthode des volumes finis est utilisée pour résoudre numériquement des équations aux dérivées partielles, comme la méthode des différences finies et celle des éléments finis. Contrairement à la méthode des différences finies, qui met en jeu des approximations des dérivées, les méthodes des volumes finis et des éléments finis exploitent des approximations d'intégrales.
Équations de Navier-Stokesthumb|Léonard de Vinci : écoulement dans une fontaine En mécanique des fluides, les équations de Navier-Stokes sont des équations aux dérivées partielles non linéaires qui décrivent le mouvement des fluides newtoniens (donc des gaz et de la majeure partie des liquides). La résolution de ces équations modélisant un fluide comme un milieu continu à une seule phase est difficile, et l'existence mathématique de solutions des équations de Navier-Stokes n'est pas démontrée.
Proper accelerationIn relativity theory, proper acceleration is the physical acceleration (i.e., measurable acceleration as by an accelerometer) experienced by an object. It is thus acceleration relative to a free-fall, or inertial, observer who is momentarily at rest relative to the object being measured. Gravitation therefore does not cause proper acceleration, because the same gravity acts equally on the inertial observer. As a consequence, all inertial observers always have a proper acceleration of zero.
Dynamique des fluidesLa dynamique des fluides (hydrodynamique ou aérodynamique), est l'étude des mouvements des fluides, qu'ils soient liquides ou gazeux. Elle fait partie de la mécanique des fluides avec l'hydrostatique (statique des fluides). La résolution d'un problème de dynamique des fluides demande de calculer diverses propriétés des fluides comme la vitesse, la viscosité, la densité, la pression et la température en tant que fonctions de l'espace et du temps.
Étoile variableEn astronomie, une étoile variable ou, par ellipse, une variable est une étoile dont l'éclat varie au cours de périodes plus ou moins longues (on parle à ce titre de variabilité stellaire). Alors que la plupart des étoiles sont de luminosité presque constante, comme le Soleil qui ne possède pratiquement pas de variation mesurable (environ 0,1 % sur un cycle de 11 ans), la luminosité de certaines étoiles varie de façon perceptible pendant des périodes de temps beaucoup plus courtes.
Mécanique des fluides numériqueLa mécanique des fluides numérique (MFN), plus souvent désignée par le terme anglais computational fluid dynamics (CFD), consiste à étudier les mouvements d'un fluide, ou leurs effets, par la résolution numérique des équations régissant le fluide. En fonction des approximations choisies, qui sont en général le résultat d'un compromis en termes de besoins de représentation physique par rapport aux ressources de calcul ou de modélisation disponibles, les équations résolues peuvent être les équations d'Euler, les équations de Navier-Stokes, etc.
Flow measurementFlow measurement is the quantification of bulk fluid movement. Flow can be measured using devices called flowmeters in various ways. The common types of flowmeters with industrial applications are listed below: Obstruction type (differential pressure or variable area) Inferential (turbine type) Electromagnetic Positive-displacement flowmeters, which accumulate a fixed volume of fluid and then count the number of times the volume is filled to measure flow. Fluid dynamic (vortex shedding) Anemometer Ultrasonic flow meter Mass flow meter (Coriolis force).
Naine blanchevignette| est une naine blanche visible comme un petit point en bas à gauche de , beaucoup plus brillante. Si ce système était observé dans le domaine des rayons X, Sirius B apparaîtrait alors plus brillante que son compagnon du fait que sa surface est significativement plus chaude. Photographie prise le 15 octobre 2003 par le télescope spatial Hubble. Une naine blanche est un objet céleste de forte densité, issu de l'évolution d'une étoile de masse modérée (de trois à quatre masses solaires au maximum) après la phase où se produisent des réactions thermonucléaires.