Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Hydropower units may be required to operate in condenser mode to supply reactive power. In this operating mode, the water level in the turbine or pump-turbine is decreased below the runner by closing the guide vanes and injecting pressurized air. While operating in condenser mode the machine experiences power losses due to several air–water interaction phenomena which cause air losses. One of such phenomena is the sloshing motion of the water free surface below the runner in the draft tube cone of a Francis turbine. The objective of the present work is to experimentally investigate the sloshing motion of the water free surface in the draft tube cone of a reduced scale physical model of a Francis turbine operating in condenser mode. Images acquisition and simultaneous pressure fluctuation measurements are performed and an image processing method is developed to investigate amplitude and frequency of the sloshing motion of the free surface. It is found that this motion is excited at the natural frequency of the water volume and corresponds to the azimuthal wavenumber m=1 of a rotating gravity wave. The amplitude of the motion is perturbed by wave breaking and it decreases by increasing the densimetric Froude number. The sloshing frequency slightly increases with respect to the natural frequency of the water volume by increasing the densimetric Froude number. Moreover, it results that this resonant phenomenon is not related to the torque perturbation.
François Avellan, Siamak Alimirzazadeh, Takashi Kumashiro
François Avellan, Sebastián Camilo Leguizamón Sarmiento
François Avellan, Elena Vagnoni